# ON THE UNION OF TWO STARSHAPED SETS 

D. G. Larman


#### Abstract

Let $S$ be a compact subset of a topological linear space. We shall say that $S$ has the property $\varphi$ if there exists a line segment $R$ such that each triple of points $x, y$ and $z$ in $S$ determines at least one point $p$ of $R$ (depending on $x, y$ and $z$ ) such that at least two of the segments $x p, y p$ and $z p$ are in $S$. It is clear that if $S$ is the union of two starshaped sets then $S$ has the property $\varphi$, and the problem has been raised by F. A. Valentine [1] as to whether the property $\varphi$ ensures that $S$ is the union of two starshaped sets. We shall show that this is not so, in general, but we begin by giving a further constraint which ensures the result.


Theorem. If a compact set $S$, of a topological linear space, has the property $\varphi$, and, for any point $q$ of $S$, the set of points of $R$ which can be seen, via $S$, from $q$ form an interval, then $S$ is the union of two starshaped sets.

Proof. Consider the collection of sets $\left\{T_{q}\right\}, q \in S$, where $T_{q}$ denotes the set of points of $R$ which can be seen, via $S$, from $q$. If every two intervals of this collection have a nonempty intersection, then it follows from Helly's Theorem that $S$ is starshaped from a point of $R$. Suppose, therefore, that there exist points $q_{1}, q_{2}$ of $S$ such that $T_{q_{1}} \cap T_{q_{2}}=\phi$. We partition the collection $\left\{T_{q}\right\}, q \in S$, into three collections $\left\{T_{q}\right\}_{1},\left\{T_{q}\right\}_{2},\left\{T_{q}\right\}_{12}$, so that $T_{q}$ belongs to $\left\{T_{q}\right\}_{1}$ if $T_{q}$ meets $T_{q_{1}}$ but not $T_{q_{2}}, T_{q}$ belongs to $\left\{T_{q}\right\}_{2}$ if $T_{q}$ meets $T_{q_{2}}$ but not $T_{q_{1}}, T_{q}$ belongs to $\left\{T_{q}\right\}_{12}$ if $T_{q}$ meets both $T_{q_{1}}$ and $T_{q_{2}}$. If $T_{q}, T_{r}$ are two sets of $\left\{T_{q}\right\}_{i}(i=1,2)$ then it follows from $\varphi$ applied to the points $q, r$ and $q_{j}(j \neq i)$ that $T_{q}$ meets $T_{r}$. If $T_{q}, T_{r}$ are two sets of $\left\{T_{q}\right\}_{12}$, then, since both $T_{q}$ and $T_{r}$ span the gap between $T_{q_{1}}$ and $T_{q_{2}}$, it follows that $T_{q}$ meets $T_{r}$. Further, if $T_{q}$ belongs to $\left\{T_{q}\right\}_{12}$, then it must meet every set of at least one of the collections $\left\{T_{q}\right\}_{i}(i=1,2)$. For, otherwise, there exists sets $T_{r_{1}}, T_{r_{2}}$, belonging to $\left\{T_{q}\right\}_{1},\left\{T_{q}\right\}_{2}$ respectively, which do not meet $T_{q}$. However, by property $\varphi$ applied to $r_{1}, r_{2}$ and $q$, this implies that $T_{r_{1}}$ meets $T_{r_{2}}$ and hence that

$$
T_{r_{1}} \cup T_{r_{2}}
$$

spans the gap between $T_{q_{1}}$ and $T_{q_{2}}$. But this implies that $T_{r_{1}} \cup T_{r_{2}}$ meets $T_{q}$; contradiction. We now form the collections $\left\{T_{q}\right\}_{12 i}(i=1,2)$ so that $T_{q}$ belongs to $\left\{T_{q}\right\}_{12 i}$ if either $T_{q}$ is in the collection $\left\{T_{q}\right\}_{i}$ or $T_{q}$ is in $\left\{T_{q}\right\}_{12}$ and meets every member of $\left\{T_{q}\right\}_{i}$. We note that

