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STABILITY IN TOPOLOGICAL DYNAMICS

JAMES W. ENGLAND

This paper is concerned with two types of stability in
transformation groups. The first is a generalization of
Lyapunow stability. In the past this notion has been discussed
in a setting where the phase group was either the integers
or the one-parameter group of reals. In this paper it is
defined for replete subsets of a more general phase group in
a transformation group. Some connections between this type
of stability and almost periodicity are given. In particular, it
is shown that a type of uniform Lyapunov stability will
imply Bohr almost periodicity. The second type of stability
in this paper is a limit stability. This gives a condition which
is necessary and sufficient for the limit set to be a minimal
set. Finally, these two types of stability are combined to
provide a sufficient condition for a limit set to be the closure
of a Bohr almost periodic orbit.

Throughout this paper X will be assumed to be a uniform space.
It will be implicity assumed that the Hausdorff topology of X is the
one induced by the uniformity. T will denote a topological group
and the triple (X, Γ, π) will be called a transformation group provided
X and T are as above and π: X x T -> X such that if e is the identity
of T then:

(1) 7Γ (x, e) — x for all x in X,
(2) π (π (x, tj, t2) == π (x, tx t2) for all x in Xand tl9 t2 in Γ,
( 3 ) π is continuous. Henceforth we shall write π (x, t) = xt;

and if A c T then xA — {xt: t ε A}.

DEFINITION 1. A subset A of T is called {left}{right} syndetic
[6] in T provided there exists a compact set K c T such that {AK — T)
{KA -= T). It is clear that if A is left syndetic in T then A""1 is
right syndetic in T.

DEFINITION 2. A point x e X is called S-Lyapunov stable (S c T)
with respect to a set B c X provided that for each index a of X
there exists an index β of X such that if y eB f] %β then yt e xta
for all t in S.

THEOREM 1. If S is left syndetic in T and Cl (xT) ( = closure
xT) is compact then a necessary and sufficient condition that xe X
be T-Lyapunov stable with respect to xT is that x be S-Lyapunov stable
with respect to xT.
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