LINEAR FUNCTIONALS ON ORLICZ SPACES: GENERAL THEORY

M. M. RAO

Let \emptyset be a generalized Young's function and L^{\emptyset} the corresponding Orlicz space, on a general measure space. The problem considered here is the characterization of the dual space $(L^{\emptyset})^*$, in terms of integral representations, without any further restrictions. A complete solution of the problem is presented in this paper. If \emptyset is continuous and the measure space is sigma finite (or localizable), then a characterization of the second dual $(L^{\emptyset})^{**}$ is also given. A detailed account of the quotient spaces of L^{\emptyset} relative to certain subspaces is presented; and the analysis appears useful in the study of such spaces as the Riesz and Köthe-Toeplitz spaces.

The purpose of this paper is two-fold. First it contains a complete study centering around the singular linear functionals, analyzing certain factor (or quotient) spaces, of the Orlicz spaces. Second, the so-called 'generalized Young's functions' and the associated Orlicz spaces, and their adjoint spaces, are also considered. (Precise definitions will be given later.) The work here is a continuation of [19] and the notation and terminology of that paper will be maintained. However, the theory presented here subsumes [19], and the exposition is essentially self-contained.

If Φ and Ψ are complementary Young's functions (cf. Definition 1 below), let L^{σ} and L^{τ} be the corresponding Orlicz spaces on a (not necessarily finite or even localizable) measure space (Ω, Σ, μ) which has only the (nonrestrictive) finite subset property. This latter means that every set of positive μ -measure has a subset of positive finite μ -measure. Then the representation problem for continuous linear functionals on L° is to express them as integrals relative to appropriate additive set functions on Σ . In [1] and [19] certain general integral representations of such elements were obtained when the Young's function Φ and the measure μ satisfy some restrictions. If \mathcal{M}^{\bullet} is the closed subspace of L^{ϕ} spanned by the u-step functions then $x^* \in (L^{\emptyset})^*$, adjoint of L^{\emptyset} , is termed singular if $x^*(\mathscr{M}^{\emptyset}) = 0$, i.e., $x^* \in (\mathcal{M}^{\mathfrak{o}})^{\perp}$, and it is absolutely continuous if there exists a $\gamma_E \in \mathcal{M}^{\mathfrak{o}}$, and $x^*(\chi_E) \neq 0$, where χ_E is the indicator of $E \in \Sigma$. It is known that $(\mathcal{M}^{\bullet})^{\perp} \neq \{0\}$ if Φ is continuous and grows exponentially fast. In Theorem 2 (and hence 3) of [19] it was announced that every $x^* \in (L^{\phi})^*$ is of the form $x^*(f) = \int_{a} f dG$ for a certain additive set function G. However, the result was proved only for such x^* that $x^*(\chi_E) \neq 0$ for