EXTENSIONS OF OPIAL'S INEQUALITY

P. R. Beesack and K. M. Das

In this paper certain inequalities involving integrals of powers of a function and of its derivative are proved. The prototype of such inequalities is Opial's Inequality which states that $2 \int_{0}^{x}\left|y y^{\prime}\right| d x \leqq X \int_{0}^{x} y^{\prime 2} d x$ whenever y is absolutely continuous on $[0, X]$ with $y(0)=0$. The extensions dealt with here are all integral inequalities of the form

$$
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq K(p, q) \int_{a}^{b} r\left|y^{\prime}\right|^{p+q} d x
$$

(or with \leqq replaced by \geqq), where r, s are nonnegative, measurable functions on $I=[a, b]$, and y is absolutely continuous on I with either $y(a)=0$, or $y(b)=0$, or both. In some cases y may be complex-valued, while in other cases y^{\prime} must not change sign on I. The inequality (as stated) is obtained in case $p q>0$ and either $p+q \geqq 1$ or $p+q<0$, while the opposite inequality is obtained in case $p<0, q \geqq 1, p+q<0$, or $p>0, p+q<0$. In all cases, necessary and sufficient conditions are obtained for equality to hold.

1. In a recent paper [11], G. S. Yang proved the following generalization of an inequality of Z. Opial [7]:

If y is absolutely continuous on $[a, X]$ with $y(a)=0$, and if $p, q \geqq 1$, then

$$
\begin{equation*}
\int_{a}^{x}|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq \frac{q}{p+q}(X-a)^{p} \int_{a}^{x}\left|y^{\prime}\right|^{p+q} d x \tag{1}
\end{equation*}
$$

Yang's proof is actually valid for $p \geqq 0, q \geqq 1$. For $p=q=1, a=0$, (1) is Opial's result. (See also Olech [6], Beesack [1], Levinson [4], Mallows [5], and Pederson [8] for successively simpler proofs of Opial's inequality; as well as Redheffer [9] for other generalizations of this inequality.) The case $q=1, p$ a positive integer, was proved by Hua [3], and the result for $q=1, p \geqq 0$ is included in a generalization of Calvert [2]; a short, direct proof of the latter case was also given by Wong [10]. If $q=1$ the inequality (1) is sharp, but it is not sharp for $q>1$.
2. The purpose of this paper is to obtain sharp generalizations of (1), and to consider other values of the parameters p, q; the method of proof is a modification of that of Yang [11]. To this end, we suppose first that y is absolutely continuous on $[a, X]$, where $-\infty \leqq$ $a<X \leqq \infty$, and that y^{\prime} does not change sign on (a, X), so that

