EXTENSIONS OF THE MAXIMAL IDEAL SPACE OF A FUNCTION ALGEBRA

J-E. Björk

Let A be a function algebra with its maximal ideal space M_A . Let B be a function algebra such that $A \subset B \subset C(M_A)$. What can be said about M_B ? We prove that $M_A = M_B$ if every point $x \in M_A$ has a fundamental neighborhood system $\{W\}$ such that the topological boundary bW of each W is contained in the Choquet boundary of A or if A is a normal function algebra. The first condition is satisfied if M_A is a one dimensional topological space. Let H(A) be the function algebra on M_A generated by all functions which are locally approximable in A. We prove that $M_{H(A)} = M_A$ and then we try to generalize this result. If $f \in C(M_A)$ is such that f is locally approximable in A at every point where f is different from zero then M_A is the maximal ideal space of the function algebra generated by A and f. We also look at closed subsets F of M_A such that $M_{H(F)} = F$ where H(F) is the function algebra generated by restricting to F all functions that are defined and locally approximable in A in some neighborhood of F. These sets are called natural sets. We prove that there exists a smallest natural set B(F) containing a closed set F in M_A and that the Silov boundary of H(B(F)) is contained in F. We also find conditions that guarantee that a closed set in M_A is a natural set.

If X is a set and f is a complex-valued function defined on Xthen $|f|_{v} = \sup \{|f(x)|| x \in V\}$ for every $V \subset X$ and f_{v} is the restriction of f to V. If V is a subset of a topological space X then bVis the topological boundary of V in X. If A is a function algebra we denote by M_A its maximal ideal space, and S_A its Shilov boundary. A point $x \in M_A$ is a strong boundary point in A if $\{x\} = \cap P(f)$, where P(f) are peak sets of A in M_A . We shall use the wellknown fact that S_A is the closure of the strong boundary points of A in M_A . If F is a closed set in M_A then Hull $_A(F) = \{x \in M_A || f(x) | \leq |f|_F$ for every $f \in A$. If $x \in \operatorname{Hull}_{A}(F)$ we say that F is a support of x. A minimal support of x is a support F of x such that no proper closed subset of F_{i} is a support of x. Now we have the principle of minimal supports. Let F be a minimal support of x. Suppose $\{f_n\} \in A$ is such that $|f_n|_F \leq K$ for some constant K independent of n and $\lim |f_n|_{W \cap F} =$ 0, where W is an open subset of M_A such that $W \cap F$ is not empty. Then it follows that $\lim f_n(x) = 0$. If F is a closed set in M_A then A_F is the function algebra on F generated by functions $f \in C(F)$ such that f = g on F for some $g \in A$. Now M_{A_F} can be identified with