STANDARD ALGEBRAS

R. D. SCHAFER

In 1948 A. A. Albert defined a standard algebra $\mathfrak A$ by the identities (x,y,z)+(z,x,y)-(x,z,y)=0 and

$$(x, y, wz) + (w, y, xz) + (z, y, wx) = 0$$
.

Standard algebras include all associative algebras and commutative Jordan algebras. The radical $\mathfrak R$ of any finite-dimensional standard algebra $\mathfrak R$ is its maximal nilpotent ideal. It is known that any semisimple standard algebra is a direct sum of simple ideals, and that any simple standard algebra is either associative or a commutative Jordan algebra.

In this paper we study Peirce decompositions and derivations of standard algebras. We prove the Wedderburn principal theorem for standard algebras of characteristic $\neq 2$ (announced in 1950 by A. J. Penico for characteristic 0): if $\mathfrak{A}/\mathfrak{R}$ is separable, then $\mathfrak{A}=\mathfrak{S}+\mathfrak{R}$ where \mathfrak{S} is a subalgebra of $\mathfrak{A}, \mathfrak{S}\cong \mathfrak{A}/\mathfrak{R}$. For standard algebras of characteristic 0 we prove analogues of the Malcev-Harish-Chandra theorem and the first Whitehead lemma, and we determine when the derivation algebra of \mathfrak{A} is semisimple.

Let $\mathfrak A$ be a nonassociative algebra over a field F of characteristic $\neq 2$. In [2] Albert called $\mathfrak A$ a standard algebra in case the identities

$$(1) (x, y, z) + (z, x, y) - (x, z, y) = 0$$

and

$$(2) (x, y, wz) + (w, y, xz) + (z, y, wx) = 0$$

are satisfied, where (x, y, z) denotes the associator

$$(x, y, z) = (xy)z - x(yz).$$

Clearly every associative algebra is a standard algebra. In every non-associative algebra one has the identity

$$(x, y, z) + (z, x, y) - (x, z, y) = [xy, z] - [x, z]y - x[y, z]$$

where [x, y] denotes the commutator [x, y] = xy - yx. Hence (1) is equivalent to

$$[xy, z] = [x, z]y + x[y, z],$$

so that every commutative algebra satisfies (1). Thus every commutative Jordan algebra of characteristic $\neq 2$ is a standard algebra.

If the characteristic is $\neq 3$, then (2) implies