RANK k GRASSMANN PRODUCTS

M. J. S. Lim

Abstract

The general question concerning the structure of subspaces of a symmetry class of tensors in which every nonzero element has an irreducible representation as a sum of decomposable (or pure) elements of a given length is as yet largely unanswered. This problem relates to the problem of characterizing the linear transformations on such a symmetry class which map the set of tensors of 'irreducible length" k into itself; i.e., preserves the rank k of the tensors. Another related problem is: "Is it possible to obtain algebraic relations involving the components of a tensor which imply it has rank ('Irreducible length'') k, for any positive integer k ''?

This paper is concerned mostly with the third question for the $\binom{n}{r}$-dimensional Grassmann Product Space $\wedge^{r} U$, where U is an n dimensional vector space over a field F. It includes some discussion of the first question for F algebraically closed $r=2$.

A vector in $\wedge^{r} U$ is said to have rank k if it can be expressed as the sum of k, and not less than k, nonzero pure r-vectors in $\wedge^{r} U$. We denote the set of such vectors by $C_{k i}^{r}(U)$. The nonzero pure products in $\wedge^{r} U$ have rank one.

The results obtained in this paper are as follows: (i) the rank of a vector in $\wedge^{r} U$ is unchanged if we extend U, (ii) in the Grassmann Algebra $\wedge^{0} U+\wedge^{1} U+\cdots+\wedge^{r} U+\cdots$, multiplication of a Grassmann product by a nonzero vector in U either annihilates it or preserves its rank, (iii) we can associate with each vector z in $C_{k}^{r}(U)$ a unique subspace $U(z)$ in U, (iv) if $z \in C_{k}^{r}(U)$ and $\operatorname{dim} U(z)$ is $r k$, then z has rank k, $(v) x_{1} \wedge y_{1}+\cdots+x_{s} \wedge y_{s} \in C_{s}^{2}(U)$ if and only if $\left\{x_{1}, y_{1}, \cdots, x_{s}, y_{s}\right\}$ is independent. Finally, we discuss the rank two subspaces in $\wedge^{2} U$ when $\operatorname{dim} U=4$. If F is algebraically closed, these subspaces are of dimension one. Otherwise, they can be different, as the examples show.

In this paper, $Q(k, t, n)$ will denote the totality of strictly increasing sequences of k integers chosen from $t, t+1, \cdots, n ; S(k, t, n)$ the totality of sequences of k integers chosen from $t, t+1, \cdots, n$.

Let x_{1}, \cdots, x_{n} be a basis of U. For $\omega=\left(i_{1}, \cdots, i_{r}\right) \in Q(r, 1, n)$, we denote the product $x_{i_{1}} \wedge \cdots \wedge x_{i_{r}}$ by \boldsymbol{x}_{ω}.

Let p be an r-linear alternating function from $\pi_{i=1}^{r} E \rightarrow F, E=$ $\{1, \cdots, n\}$.

We will need the following known result.
Theorem 1. (See [2], p. 289-312.) Let

