FINITE GROUPS WITH SMALL CHARACTER DEGREES AND LARGE PRIME DIVISORS II

I. M. ISAACS AND D. S. PASSMAN

In a previous paper one of the authors considered groups G with r. b. n (representation bound n) and $n < p^2$ for some prime p. Here we continue this study. We first offer a new proof of the fact that if n = p - 1 then G has a normal Sylow p-subgroup. Next we show that if $n = p^{3/2}$ then $p^2 \nmid |G/O_p(G)|$. Finally we consider n = 2p - 1 and with the help of the modular theory we obtain a fairly precise description of the structure of G. In particular we show that its composition factors are either p-solvable or isomorphic to PSL(2, p), PSL(2, p - 1) for p a Fermat prime or PSL(2, p + 1) for p a Mersenne prime.

Now the irreducible characters of PSL(2, p) have degrees (see [10] p. 128) 1, $p, p \pm 1$, $(p \pm 1)/2$ for p odd and those of $PSL(2, 2^a)$ have degrees (see [10] p. 134) 1, $2^a, 2^a \pm 1$. Thus for p > 2 the linear groups of the preceding paragraph do in fact have r.b. (2p - 1).

The notation here is standard. In addition, if χ is a character of G we let det χ denote the linear character which is the determinant of the representation associated with χ . Also $n_p(G)$ denotes the number of Sylow *p*-subgroups of G.

LEMMA 1. Let G be a group with r.b.n. and let $N \neq G$ be a subgroup. Suppose $G = \bigcup_{i=0}^{t} Nx_i N$ is the (N, N)-double coset decomposition of G with $x_0 = 1$. Set $a_i = |Nx_i N|/|N| = [N: N \cap N^{z_i}]$. Then $n \geq (a_1 + a_2 + \cdots + a_i)/t$.

Proof. Let $\theta = (1_N)^G$ be the character of the permutation representation of G on the cosets of N. Then $\theta(1) = [G:N]$, $[\theta, 1_G] = 1$ and $||\theta||^2 = 1 + t$. Since $[\theta, 1_G] = 1$ we can write

$$\theta = \mathbf{1}_{g} + b_{1}\chi_{1} + \cdots + b_{s}\chi_{s}$$

where the χ_i are distinct nonprincipal irreducible characters of G. Thus since G has r.b.n we have

$$egin{aligned} 1+nt&=1+n(||\, heta\,||^2-1)=1+n(b_1^2+\cdots+b_s^2)\ &\geq 1+n(b_1+\cdots+b_s)\geq 1+b_1\chi_1(1)+\cdots+b_s\chi_s(1)\ &= heta(1)=1+(a_1+a_2+\cdots+a_t) \end{aligned}$$

and the result follows.