TRIVIALLY EXTENDING DECOMPOSITIONS OF E^n

JOSEPH ZAKS

Let G be a monotone decomposition of E^n , then G can be extended in a trivial way, to the monotone decomposition G^1 of E^{n+1} , where $E^n = \{(x_1, \dots, x_n, 0) \in E^{n+1}\}$, by adding to G all points of $E^{n+1} - E^n$. If the decomposition space E^n/G of G is homeomorphic to E^n , E^n/G is said to be obtained by a pseudoisotopy if there exists a map $F: E^n \times I \to E^n \times I$, such that $F_t(=F | E^n \times t)$ is homeomorphism onto $E^n \times t$, for all $0 \leq t < 1$, F_0 is the identity and F_1 is equivalent to the projection $E^n \to E^n/G$.

The purpose of this paper is to present a relation between these two notions. It will then follow, that if G is the decomposition of E^3 to points, circles and figure-eights, due to R. H. Bing, for which E^3/G is homeomorphic to E^3 , then E^4/G^1 is not homeomorphic to E^4 .

Moreover, we will present a direct, geometric proof to this particular property.

For definitions, see [1]. See also [2].

THEOREM 1. If G is a monotone decomposition of E^n , such that E^n/G is homeomorphic to E^n , then the following are equivalent:

- (1) E^{n+1}/G^1 is homeomorphic to E^{n+1} .
- (2) E^n/G can be obtained by a pseudo-isotopy.

Proof. (1) \Rightarrow (2). Let $h: E^{n+1}/G^1 \rightarrow E^{n+1}$ be a homeomorphism and let $p: E^{n+1} \rightarrow E^{n+1}/G^1$ be the projection map.

The map $H: E^n \times I \to E^{n+1}$, defined by H(x, t) = hp(x, 1-t) for all $x \in E^n$, $t \in I$, is such that H_t is a homeomorphism into for all $0 \leq t < 1$, H_1 is equivalent to the projection map $E^n \to E^n/G$, and $H(E^n \times I)$ is homeomorphic to $E^n \times I$, hence, up to a homeomorphism of $E^n \times I$ onto itself, H is the required pseudo-isotopy.

(2) \Rightarrow (1). Let $F: E^n \times I \to E^n \times I$ be the pseudo-isotopy for E^n/G . The map $H: E^{n+1} \to E^{n+1}$, where

$$H(x, t) = egin{cases} F(x, 1+t) & -1 \leq t \leq 0 \ F(x, 1-t) & 0 \leq t \leq 1 \ (x, t) & t \geq 1 \ ext{ or } t \leq -1 \end{cases} ext{ where } x \in E^n \ .$$

is well defined, $H(E^{n+1}) = E^{n+1}$, and $H(E^{n+1})$ is homeomorphic to E^{n+1}/G^1 , because $H_0 = F_1$ and it is equivalent to the projection map E^n onto E^n/G . The proof is completed.