EIGENVALUES OF THE ADJACENCY MATRIX OF CUBIC LATTICE GRAPHS

Renu Laskar

Abstract

A cubic lattice graph is defined to be a graph G, whose vertices are the ordered triplets on n symbols, such that two vertices are adjacent if and only if they have two coordinates in common. If $n_{2}(x)$ denotes the number of vertices y, which are at distance 2 from x and $A(G)$ denotes the adjacency matrix of G, then G has the following properties: $\left(\mathbf{P}_{1}\right)$ the number of vertices is $n^{3} .\left(P_{2}\right) G$ is connected and regular. $\left(P_{3}\right) n_{2}(x)=3(n-1)^{2} .\left(P_{4}\right)$ the distinct eigenvalues of $A(G)$ are $-3, n-3,2 n-3,3(n-1)$. It is shown here that if $n>7$, any graph G (with no loops and multiple edges) having the properties $\left(P_{1}\right)-\left(P_{4}\right)$ must be a cubic lattice graph. An alternative characterization of cubic lattice graphs has been given by the author (J. Comb. Theory, Vol. 3, No. 4, December 1967, 386-401).

We shall consider only finite undirected graphs without loops or multiple edges. A cubic lattice graph with characteristic n is defined to be a graph whose vertices are identified with the n^{3} ordered triplets on n symbols, with two vertices adjacent if and only if their corresponding triplets have two coordinates in common. If $d(x, y)$ denotes the distance between two vertices x and y and $\Delta(x, y)$ the number of vertices adjacent to both x and y, then it has been shown by the author [6] that for $n>7$, the following properties characterize the cubic lattice graph with characteristic n :
$\left(b_{1}\right)$ The number of vertices is n^{3}.
$\left(b_{2}\right)$ The graph is connected and regular of degree $3(n-1)$.
$\left(b_{3}\right)$ If $d(x, y)=1$, then $\Delta(x, y)=n-2$.
$\left(b_{4}\right)$ If $d(x, y)=2$, then $\Delta(x, y)=2$.
$\left(b_{5}\right)$ If $d(x, y)=2$, there exist exactly $n-1$ vertices z, adjacent to x such that $d(y, z)=3$.

Dowling [4] in a note has shown that the property (b_{5}) is implied by properties $\left(b_{1}\right)-\left(b_{4}\right)$ for $n>7$. Hence for $n>7,\left(b_{1}\right)-\left(b_{4}\right)$ characterize a cubic lattice graph with characteristic n.

The adjacency matrix $A(G)$ of a graph G is a square $(0,1)$ matrix whose rows and columns correspond to the vertices of G, and $a_{i j}=1$ if and only if i and j are adjacent. Let $n_{2}(x)$ denote the number of vertices y at distance 2 from x.

A cubic lattice graph G with characteristic n has the following properties:
$\left(P_{1}\right)$ The number of vertices is n^{3}.

