LINEAR EIGENVALUES AND A NONLINEAR BOUNDARY VALUE PROBLEM

E. M. Landesman and A. C. Lazer

In this paper a nonlinear boundary value problem for elliptic partial differential equations is considered. The principal result generalizes a previous result on a two point boundary value problem for a nonlinear second order ordinary differential equation. The solvability condition obtained for the nonlinear problem is related to the eigenvalues of an associated linear problem.

In [5] the second author and D. E. Leach considered the two point boundary value problem

$$
\begin{align*}
& u^{\prime \prime}+p\left(x, u, u^{\prime}\right) u=h\left(x, u, u^{\prime}\right) \\
& u(0)=a, u(\pi)=b . \tag{1.1}
\end{align*}
$$

It was shown that, if for some integer N there exist numbers γ_{N} and γ_{N+1} such that

$$
N^{2}<\gamma_{N} \leqq p(x, s, r) \leqq \gamma_{N+1}<(N+1)^{2}
$$

if $p(x, s, r)$ and $h(x, s, r)$ are continuous on $[0, \pi] \times(-\infty, \infty) \times(-\infty, \infty)$, and h is bounded, then the problem (1.1) has at least one solution.

In this paper we consider the n-dimensional analogue of the problem (1.1) which is

$$
\begin{gather*}
\Delta u+p\left(x, u, \frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{n}}\right) u=h\left(x, u, \frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{n}}\right), \tag{1.2}\\
u(x)=g(x) \text { on } \partial D,
\end{gather*}
$$

where D is a domain in R^{n} and Δ is the n-dimensional Laplacian. The corresponding result is that if D is a Dirichlet domain, if there exist numbers γ_{N} and γ_{N+1} such that

$$
\alpha_{N}<\gamma_{N} \leqq p\left(x, t, s_{1}, \cdots, s_{n}\right) \leqq \gamma_{N+1}<\alpha_{N+1}
$$

for $\left(x, t, s_{1}, \cdots, s_{n}\right) \in \bar{D} \times R^{n+1}$ where

$$
\alpha_{1} \leqq \alpha_{2} \leqq \cdots \leqq \alpha_{K} \leqq \alpha_{K+1} \leqq \cdots,
$$

are the eigenvalues of the problem

$$
\begin{equation*}
\Delta u+\alpha u=0, \quad u=0 \text { on } \partial D \tag{1.3}
\end{equation*}
$$

if $p\left(x, t, s_{1}, \cdots, s_{n}\right), h\left(x, t, s_{1}, \cdots, s_{n}\right)$ are continuous and h bounded on

