ABSOLUTE SUMMABILITY BY RIESZ MEANS

PREM CHANDRA

In this paper we ensure the absolute Riesz summability of Lebesgue-Fourier series under more liberal conditions imposed upon the generating function of Lebesgue-Fourier series and by taking more general type of Riesz means than whatever the present author has previously taken in proving the corresponding result. Also we give a refinement over the criterion previously proved by author himself.

1. Definitions and notations. Let $\sum_{n=0}^{\infty} a_n$ be a given infinite series with the sequence of partial sums $\{s_n\}$. Throughout the paper we suppose that

(1.1)
$$\lambda_n = \mu_0 + \mu_1 + \mu_2 + \cdots + \mu_n \longrightarrow \infty$$
, as $n \longrightarrow \infty$.

The sequence-to-sequence transformation

(1.2)
$$t_n = \frac{1}{\lambda_n} \sum_{\nu=0}^n \mu_\nu s_\nu ,$$

defines the Riesz means of sequence $\{s_n\}$ (or the series $\sum_{n=0}^{\infty} a_n$) of the type $\{\lambda_{n-1}\}$ and order unity.¹ If $t_n \to s$, as $n \to \infty$, the sequence $\{s_n\}$ is said to be summable $(R, \lambda_{n-1}, 1)$ to the sum s and if, in addition, $\{t_n\} \in BV$,² then it is said to be absolutely summable $(R, \lambda_{n-1}, 1)$, or summable $|R, \lambda_{n-1}, 1|$ and symbolically we write $\sum_{n=0}^{\infty} a_n \in |R, \lambda_{n-1}, 1|$.

The series $\sum_{n=1}^{\infty} a_n \in |R, \lambda_{n-1}, 1|$, if

$$\sum\limits_{n=0}^{\infty} \left|rac{{\it d}\lambda_n}{\lambda_n\lambda_{n+1}} \sum\limits_{
u=0}^n \lambda_
u a_{
u+1}
ight| < \infty \; .$$

Let f(t) be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Without any loss of generality the constant term of the Lebesgue-Fourier series of f(t) can be taken to be zero, so that

$$\int_{-\pi}^{\pi} f(t)dt = 0$$
 ,

and

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t)$$

¹ It is some-times called (\overline{N}, μ_n) mean, or (R, μ_n) mean, or Riesz's discrete mean of 'type' λ_{n-1} and 'order' unity and is, in fact, equivalent to the usually known $(R, \lambda_{n-1}, 1)$ mean. An explicit proof of it is contained in Iyer [6]. Also see Dikshit [3].

² '{ t_n } $\in BV'$ means $\sum_n |\Delta t_n| < \infty$, when $\Delta t_n = t_n - t_{n+1}$.