ON UNCONDITIONALLY CONVERGING SERIES AND BIORTHOGONAL SYSTEMS IN A BANACH SPACE

Gregory F. Bachelis and Haskell P. Rosenthal

Our main result is as follows: Let B be a Banach space containing no subspace isomorphic (linearly homeomorphic) to l_{∞}, and let $\left\{\left(b_{n}, \beta_{n}\right)\right\}$ be a biorthogonal sequence in B such that $\left(\beta_{n}\right)$ is total. If $x \in B$ then $\sum_{n=1}^{\infty} \beta_{n}(x) b_{n}$ converges unconditionally to x if and only if for every sequence $\left(a_{n}\right)$ of 0 's and l's there exists $y \in B$ with $\beta_{n}(y)=a_{n} \beta_{n}(x)$ for all n. This theorem improves previous results of Kadec and Pelczynski.

Similar results are obtained in the context of biorthogonal decompositions of a Banach space into separable subspaces.

1. Preliminaries. We follow the notation of [2] for the most part, and we also refer the reader to [2] for various results concerning unconditional convergence. We recall that a sequence of pairs $\left\{\left(b_{n}, \beta_{n}\right)\right\}$ is called a biorthogonal sequence in the Banach space B if for all m and $n, b_{m} \in B, \beta_{n} \in B^{*}$, and $\beta_{m}\left(b_{n}\right)=\delta_{m n} ;\left(\beta_{n}\right)$ is said to be total (in B) if given $x \in B$ with $\beta_{n}(x)=0$ for all n, then $x=0$. Finally, we denote the space of all bounded scalar-valued sequences by l_{∞}.
2. The Main Result. We first need the following lemma, due to Seever [8]:

Lemma 1. Let X be a Banach space and $T: X \rightarrow l_{\infty}$ be a bounded linear map such that for every $a \in l_{\infty}$ with $a_{n}=0$ or 1 for all n, there exists $x \in X$ with $T x=a$. Then $T(X)=l_{\infty}$.

Proof. Our hypotheses imply that T has dense range; thus it is enough to show that T has closed range. If not, then T^{*} does not have closed range, so there exists a sequence $\left(\gamma_{n}\right)$ in l_{∞}^{*} with $\left\|\gamma_{n}\right\| \rightarrow \infty$ and $\left\|T^{*}\left(\gamma_{n}\right)\right\|=1$ for all n. But if $a \in l_{\infty}$ and $a_{n}=0$ or 1 for all n, then choosing $x \in X$ with $T x=a$, we have that

$$
\sup _{n}\left|\gamma_{n}(\alpha)\right|=\sup _{n}\left|T^{*} \gamma_{n}(x)\right| \leqq\|x\|<\infty .
$$

Thus identifying l_{∞} with $C(\beta N)$ (the space of continuous scalar-valued functions on the Stone-Cēch compactification of N) and each γ_{n} with a complex regular Borel measure on βN, we have by a theorem of Dieudonne [3] (c.f. also the Correstion, pp. 311-313 of [7]) that

