VON NEUMANN ALGEBRAS GENERATED BY OPERATORS SIMILAR TO NORMAL OPERATORS

W. R. Wogen

A normal operator generates an abelian von Neumann algebra. However, an operator which is similar to a normal operator may generate a von Neumann algebra which is not even type I. In fact, it is shown that if \mathscr{A} is a von Neumann algebra on a separable Hilbert space and \mathscr{A} has no type II finite summand, then \mathscr{A} has a generator which is similar to a self-adjoint and \mathscr{A} has a generator which is similar to a unitary. The restriction that \mathscr{A} have no type II finite summand can be removed provided that it is assumed that every type II finite von Neumann algebra has a single generator.

Let \mathscr{C} be a separable Hilbert space and let \mathscr{A} be a von Neumann algebra on \mathscr{H}. \mathscr{A}^{\prime} denotes the commutant of \mathscr{A}. For $n \geqq 2$, let $M_{n}(\mathscr{A})$ denote the von Neumann algebra of $n \times n$ matrices with entries in \mathscr{A}. If T is a bounded operator, the $\mathscr{R}(T)$ is the von Neumann algebra generated by T.

We begin with some lemmas.
Lemma 1. Let $\mathscr{A}=\mathscr{R}(C)$ and suppose $n \geqq 3$. Let $\left\{\lambda_{k}\right\}_{k=1}^{n}$ and $\left\{a_{k}\right\}_{k=1}^{n-1}$ be sequences of complex numbers such that the λ_{k} are distinct, each $a_{k} \neq 0$, and $\left\|\left(\lambda_{1}-\lambda_{2}\right) C\right\| \leqq\left|a_{1} a_{2}\right|$. Define $A=\left(A_{i, j}\right)_{i, j=1}^{n} \in M_{n}(\mathscr{A})$ by $A_{k, k}=\lambda_{k} I, A_{k+1, k}=a_{k} I, A_{3,1}=C$, and $A_{i, j}=0$ otherwise. Define $B=\left(B_{i, j}\right)_{i, j=1}^{n} \in M_{n}(\mathscr{A})$ by $B_{k, k}=\lambda_{k} I$ and $B_{i, j}=0$ if $i \neq j$. Then A and B are similar, and $\mathscr{R}(A)=M_{n}(\mathscr{A})$.

Proof. It follows from [11, Lemma 1] that $\mathscr{R}(A)=M_{n}(\mathscr{A})$. To show that A and B are similar we need only that the λ_{k} are distinct. We must find an invertible operator S such that $A S=S B$. Such an S of the form $S=I+N$, where N is lower triangular and nilpotent, can be computed easily. Merely perform the matrix multiplications and solve for the entries of S. We omit the details.

Remark 1. If the operator $S=I+N$ in Lemma 1 is computed, we see that we can make the entries of N small by choosing $\|C\|$, $\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{n-1}\right|$ suitably small. Hence we can suppose that $\|N\|<$ $1 / 2$. Then $\left||S|=\|I+N\|<3 / 2\right.$ and $\left\|S^{-1}\right\|=\| I-N+N^{2}-\cdots \pm$ $N^{n-1} \|<2$. Note also that by choosing $\|C\|,\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{n-1}\right|$ suitably, we can assume that $\|A\| \leqq\|B\|+1$.

