VON NEUMANN ALGEBRAS GENERATED BY OPERATORS SIMILAR TO NORMAL OPERATORS

W. R. WOGEN

A normal operator generates an abelian von Neumann algebra. However, an operator which is similar to a normal operator may generate a von Neumann algebra which is not even type I. In fact, it is shown that if \mathscr{A} is a von Neumann algebra on a separable Hilbert space and \mathscr{A} has no type II finite summand, then \mathscr{A} has a generator which is similar to a self-adjoint and \mathscr{A} has a generator which is similar to a unitary. The restriction that \mathscr{A} have no type II finite summand can be removed provided that it is assumed that every type II finite von Neumann algebra has a single generator.

Let \mathscr{H} be a separable Hilbert space and let \mathscr{A} be a von Neumann algebra on \mathscr{H} . \mathscr{A}' denotes the commutant of \mathscr{A} . For $n \geq 2$, let $M_n(\mathscr{A})$ denote the von Neumann algebra of $n \times n$ matrices with entries in \mathscr{A} . If T is a bounded operator, the $\mathscr{R}(T)$ is the von Neumann algebra generated by T.

We begin with some lemmas.

LEMMA 1. Let $\mathscr{A} = \mathscr{R}(C)$ and suppose $n \geq 3$. Let $\{\lambda_k\}_{k=1}^n$ and $\{a_k\}_{k=1}^{n-1}$ be sequences of complex numbers such that the λ_k are distinct, each $a_k \neq 0$, and $||(\lambda_1 - \lambda_2)C|| \leq |a_1a_2|$. Define $A = (A_{i,j})_{i,j=1}^n \in M_n(\mathscr{A})$ by $A_{k,k} = \lambda_k I$, $A_{k+1,k} = a_k I$, $A_{3,1} = C$, and $A_{i,j} = 0$ otherwise. Define $B = (B_{i,j})_{i,j=1}^n \in M_n(\mathscr{A})$ by $B_{k,k} = \lambda_k I$ and $B_{i,j} = 0$ if $i \neq j$. Then A and B are similar, and $\mathscr{R}(A) = M_n(\mathscr{A})$.

Proof. It follows from [11, Lemma 1] that $\mathscr{R}(A) = M_n(\mathscr{A})$. To show that A and B are similar we need only that the λ_k are distinct. We must find an invertible operator S such that AS = SB. Such an S of the form S = I + N, where N is lower triangular and nilpotent, can be computed easily. Merely perform the matrix multiplications and solve for the entries of S. We omit the details.

REMARK 1. If the operator S = I + N in Lemma 1 is computed, we see that we can make the entries of N small by choosing ||C||, $|a_1|, |a_2|, \dots, |a_{n-1}|$ suitably small. Hence we can suppose that ||N|| < 1/2. Then ||S| = ||I + N|| < 3/2 and $||S^{-1}|| = ||I - N + N^2 - \dots \pm N^{n-1}|| < 2$. Note also that by choosing $||C||, |a_1|, |a_2|, \dots, |a_{n-1}|$ suitably, we can assume that $||A|| \leq ||B|| + 1$.