C-COMPACT AND FUNCTIONALLY COMPACT SPACES

G. Goss and G. Viglino

In the first section of this note a question posed by G. Viglino is resolved by constructing a C-compact space which is not seminormal. In the second section some characterizations of C-compact and functionally compact spaces are introduced. In the final section, embedding theorems of spaces into C-compact and functionally compact spaces are noted.

1. A Counterexample.

DEFINITIONS. (a) A Hausdorff space X is absolutely closed if given an open cover \mathscr{V} of X, then there exists a finite number of elements of \mathscr{V} , say V_i , $1 \leq i \leq n$, with $X \subset \operatorname{Cl} \bigcup_{i=1}^n V_i$.

(b) A Hausdorff space (X, τ) is *C*-compact if given a closed set Q of X and a τ -open cover \mathscr{V} of Q, then there exists a finite number of elements of \mathscr{V} , say V_i , $1 \leq i \leq n$, with $Q \subset Cl_X \bigcup_{i=1}^n V_i$.

(c) An open set V is regular if $V = \overline{V}^{\circ}$.

(d) A space X is seminormal if given a closed subset C of X and an open set V containing G, then there exists a regular open set R with $C \subset R \subset V$.

G. Viglino has shown that a seminormal absolutely closed space is C-compact, and posed the question as to whether or not the converse holds [5]. The following is an example of a C-compact space which is not seminormal. An example has also been obtained by T. Lominac, Abstract \sharp 682-54-33.

EXAMPLE. Let Z represent the set of positive integers. Let

$$X = \left\{ \left(rac{1}{2n-1}, rac{1}{m}
ight) \middle| n, m \in Z
ight\} \cup \left\{ \left(rac{1}{2n}, -rac{1}{m}
ight) \middle| n, m \in Z
ight\}$$

 $\cup \left\{ \left(rac{1}{n}, 0
ight) \middle| n \in Z
ight\} \cup \{\infty\}$.

Topologize X as follows. Partition Z into infinitely many infinite equivalence classes, $\{Z_i\}_{i=1}^{\infty}$, and let $\{Z_i^I\}_{J=1}^{\infty}$ be a partition of Z_1 into infinitely many infinite equivalent classes. Let Φ denote a bijection from $\{(1/(2n-1), 1/m) \mid n, m \in Z\}$ to $Z \setminus \{1\}$. Let a neighborhood system for the points of the form (1/(2i-1), 0) be composed of all sets of the form $U_{(2i-1,0;k)} = V \cup F$ where $V = \{(1/(2i-1), 0)\} \cup \{(1/(2i-1), 1/m) \mid m \geq k\}$ and $F = \{(1/(2n-1), 1/m) \mid m \in Z_i \text{ and } n \geq k\} \cup \{(1/2n, -1/s) \mid m \in Z_i \text{ and } n \geq k\} \}$