COUNTEREXAMPLES TO A CONJECTURE OF G. N. DE OLIVEIRA

D. J. HARTFIEL

G. N. de Oliveira gives the following conjecture. CONJECTURE. Let A be an $n \times n$ doubly stochastic irreducible matrix. If *n* is even, then f(z) = perm (Iz - A) has no real roots; if *n* is odd, then f(z) = perm (Iz - A) has one and only one real root.

In this paper we give counter examples to this conjecture.

Results:

EXAMPLE 1. Let

$$A = egin{bmatrix} rac{1}{2} & rac{1}{2} & 0 \ rac{1}{2} & rac{1}{4} & rac{1}{4} \ 0 & rac{1}{4} & rac{3}{4} \end{bmatrix}$$

f(z) = perm (Iz - A) is such that f(0) < 0 and f(1) > 0. Consider $f(z) \cdot (z - 1) = g(z)$. Note that g(0) > 0 and since there is a $\xi(0 < \xi < 1)$ for which $f(\xi) > 0$ we see that $g(\xi) < 0$. Now consider

$$B(arepsilon) = egin{bmatrix} rac{1}{2} & rac{1}{2} & 0 & 0 \ rac{1}{2} & rac{1}{4} & rac{1}{4} & 0 \ 0 & rac{1}{4} & rac{3}{4} & -arepsilon & arepsilon \ 0 & 0 & arepsilon & 1 - arepsilon \end{bmatrix}$$

If $0 \leq \varepsilon \leq \frac{3}{4}$, $B(\varepsilon)$ is doubly stochastic. Further if $g_{\varepsilon}(z) = \operatorname{perm} [Iz - B(\varepsilon)]$ then for each z, $g(z) = \lim_{\varepsilon \to 0} g_{\varepsilon}(z)$. Since $g_{\varepsilon}(0) > 0$ for each ε and $g(\xi) = \lim_{\varepsilon \to 0} g_{\varepsilon}(\xi) < 0$ we see that for sufficiently small ε , say ε_0 , $g_{\varepsilon_0}(z)$ has a real root and $B(\varepsilon_0)$ is irreducible. This yields the counter-example. Note also that $g_{\varepsilon_0}(z) > 0$ for z > 1 [see 1], hence $g_{\varepsilon_0}(z)$ has at least two real roots.

EXAMPLE 2. For simplification let $B(\varepsilon_0) = B$ and $g_{\varepsilon_0}(z) = g(z)$. Recall

- (a) g(0) > 0 and
- (b) $g(\xi) < 0$. By direct calculation we see that
- (c) g(1) > 0 and hence for some $\eta, \xi < \eta < 1$
- (d) $g(\eta) > 0$.

Now consider $f(z) = g(z) \cdot (z - 1)$. Note that

- (a) f(0) < 0
- (b) $f(\xi) > 0$