AN ALGEBRAIC PROPERTY OF THE TOTALLY SYMMETRIC LOOPS ASSOCIATED WITH KIRKMAN-STEINER TRIPLE SYSTEMS

A. HEDAYAT

The concept of an x-root of degree r in a loop of order n is introduced. It is shown that the totally symmetric loop of order n + 1 derived from any Kirkman-Steiner triple system of order n admits a maximal identity-root. A statistical-combinatorial application of this algebraic property is then indicated. Finally, two open problems are also given.

A mathematical system consisting of an *n*-set Ω and a binary operation * is said to form a loop of order *n* if the following axioms are satisfied:

(1) Ω contains an identity element e such that x * e = e * x = x for every x in Ω .

(2) Any two of the elements in the equation x * y = z uniquely determine the third.

Since the notation x * y is too bulky we shall use, hereafter, the notation xy instead. A loop is said to be a totally symmetric loop if it also satisfies

(3) xy = yx and x(xy) = y for all x and y in Ω .

In this paper, we shall introduce and study an algebraic property of totally symmetric loops of order $n \equiv 3 \pmod{6}$. In the final part of this paper we shall indicate, briefly, a statistical-combinatorial application of this study. A few open questions are also stated.

We begin by introducing and reviewing certain concepts and results that will be relevant to our forthcoming results.

DEFINITION 1. We say a loop \mathcal{L} of order *n* accepts a

 (k_1, k_2, \cdots, k_r)

orthogonal partition if the n^2 cells in the Cayley table of \mathcal{L} can be divided into r mutually disjoint exhaustive sets S_1, S_2, \dots, S_r ; in such a way that (1) S_i has k_i cells from each row and each column, (2) each element of \mathcal{L} appears k_i times in the cells of S_i ,