THE HASSE-WITT-MATRIX OF SPECIAL PROJECTIVE VARIETIES

Leonhard Miller

Abstract

The Hasse-Witt-matrix of a projective hypersurface defined over a perfect field k of characteristic p is studied using an explicit description of the Cartier-operator. We get the following applications. If L is a linear variety of dimension $n+1$ and X a generic hypersurface of degree d, which divides $p-1$, then the Frobenius-operator \mathscr{F} on $H^{n}\left(X \cdot L ; \mathcal{O}_{L \cdot Y}\right)$ is invertible.

As another application we prove the invertibility of the Hasse-Witt-matrix for the generic curve of genus two. We don't study the Frobenius \mathscr{F} directly, but the Cartier-operator [1]. It is wellknown, that for curves Frobenius and Cartier-operator are dual to each other under the duality of the Riemann-Roch theorem. A similar fact is true for higher dimension via Serre duality. We have therefore to extend to the whole "De Rham" ring the description of the Cartier-operator given in [4] for 1 -forms. We give this extention in §1. Diagonal hypersurfaces are studied in §2 and the invertibility of the Hasse-Witt-matrix is proved, if the degree divides $p-1$. The same theorem for the generic hypersurface follows then from the semicontinuity of the matrix rank. The § 3 is devoted to hyperelliptic curves and is intended as a preparation for a detailed study of curves of genus two.

1. The Cartier-operator of a projective hypersurface. We extend the explicit construction of the Cartier-operator given in [4] to the whole "De Rham" ring, but restrict ourself to projective hypersurfaces.

As an application we show: Let V be a projective hypersurface of dimension $n-1$, defined by a diagonal equation $F(X)=\sum_{i=0}^{n} a_{i} X_{i}^{r}$, $a_{i} \in k$ a perfect field of char $k=p>0, a_{i} \neq 0$. Let X be a linear variety of dimension $t+1$. If r divides $p-1$, then

$$
\mathscr{F}: H^{t}\left(X \cdot V, \mathscr{O}_{X \cdot V}\right) \rightarrow H^{t}\left(X \cdot V, \mathscr{O}_{X \cdot V}\right)
$$

is invertible, \mathscr{F} being the induced Frobenius endomorphism. We have to rely on a technical proposition, which is a collection of some lemmas in [4]. We give first the proposition.

Proposition 1. Let

$$
\psi: k[T] \rightarrow k[T] \quad\left(T=\left(T_{1}, \cdots, T_{n}\right)\right)
$$

