MAPPING SPACES AND CS-NETWORKS

J. A. GUTHRIE

In this paper the space of maps from an $rack{R}_0$ -space to a space $rack{Y}$ is studied by means of convergent sequence-networks. The notion of a cs- σ -space, a simultaneous generalization of metric spaces and $rack{R}_0$ -spaces, is defined, and it is shown that if $rack{Y}$ is a (paracompact) cs- σ -space then the mapping space from $rack{X}$ to $rack{Y}$ is a (paracompact) cs- σ -space when equipped with either the compact-open or the cs-open topology. It is proved that the compact sets are the same in the two topologies. The class of cs- σ -spaces and the class of $rack{R}$ -spaces introduced by O'Meara are shown to be identical in the presence of paracompactness.

In this paper all maps are continuous and all spaces Hausdorff.

1. CS-networks. We shall call a collection $\mathscr P$ of subsets of a space X a k-network for X if whenever $C \subset U$, with C compact and U open in X, there exist finitely many elements of $\mathscr P$ whose union covers C and lies in U. This is a slight modification of what E. Michael [2] called a pseudobase. We may define the c-spaces of Michael as regular spaces with a countable k-network.

If X is a space with topology \mathscr{T} we shall denote by k(X) the k-space obtained by retopologizing X so that a set is closed if its intersection with every \mathscr{T} -compact set is \mathscr{T} -closed.

If $\{z_1, z_2, \dots\}$ is a sequence of points which converges to a point z, then we call the set $Z = \{z, z_1, z_2, \dots\}$ a convergent sequence and denote by Z_n the convergent sequence $\{z, z_n, z_{n+1}, \dots\}$.

A collection \mathscr{T} of subsets of a space X is a convergent sequencenetwork or, more conveniently, a cs-network for X if whenever $Z \subset U$, with Z a convergent sequence and U open in X, then $Z_n \subset P \subset U$ for some n and some $P \in \mathscr{T}$. We call a collection \mathscr{T} of subsets of X a network for X if whenever $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathscr{T}$.

The notion of cs-network was introduced in [1] where the following theorem was proved.

THEOREM 1. For a topological space X the following are equivalent:

- (1) X is an \aleph_0 -space.
- (2) X is a regular space with a countable cs-network.

We shall call a regular space with a σ -locally finite cs-network a cs- σ -space. It is clear from Theorem 1 that every $\mbox{\ensuremath{\ensuremath{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensu$