SETS GENERATED BY RECTANGLES

R. H. BING, W. W. BLEDSOE, AND R. D. MAULDIN

For any family F of sets, let $\mathscr{R}(F)$ denote the smallest σ -algebra containing F. Throughout this paper X denotes a set and \mathscr{R} the family of sets of the form $A \times B$, for $A \subseteq X$ and $B \subseteq X$. It is of interest to find conditions under which the following holds:

(1) Each subset of $X \times X$ is a member of $\mathscr{B}(\mathscr{R})$

The interesting case is when

 $\omega_{\text{l}} < \operatorname{Card} X \leqq c$,

since results for other cases are known. It is shown in Theorem 9 that (1) is equivalent to

(2) There is a countable ordinal α such that each subset of $X \times X$ can be generated from \mathscr{R} is α Baire process steps.

It is also shown that the two-dimensional statements (1) and (2) are equivalent to the one-dimensional statement

There is a countable ordinal α such that for each family H of subsets of X with

(3) Card H = Card X, there is a countable family G such that each member of H can be generated from G in α steps.

It is shown in Theorem 5 that the continuum hypothesis (CH) is equivalent to certain statements about rectangles of the form (1) and (2) with $\alpha = 2$.

Rao [7, 8] and Kunen [2] have shown that

THEOREM 1. If Card $X \leq \omega_1$ (the first uncountable cardinal) then (1) is true and if Card X > c then (1) is false.

The question of whether (1) is true (without the requirement Card $X \leq \omega_1$) was raised by Johnson [1] and earlier by Erdös, Ulam, and others (see [8], p. 197). The arguments in Kunen's thesis actually showed that if Card $X \leq \omega_1$ then

Each subset of $X \times X$ can be generated

(4) from \mathscr{R} in 2 steps (i.e., each subset is a member of $\mathscr{R}_{\mathfrak{o}\mathfrak{d}}$. See definitions in §2.).

In Theorem 5 we generalize Theorem 1 and Kunen's result (4),