ON A SPLITTING FIELD OF REPRESENTATIONS OF A FINITE GROUP

Toshiniko Yamada

Abstract

The theorem of \mathbf{P}. Fong about a splitting field of representations of a finite group G will be improved to the effect that the order of G mentioned in it will be replaced by the exponent of G. The proof depends on the Brauer-Witt theorem and properties of cyclotomic algebras.

Let Q denote the rational field. For a positive integer n, ζ_{n} is a primitive nth root of unity. Let χ be an irreducible character of a finite group G (an irreducible character means an absolutely irreducible one). Let K be a field of characteristic 0 . Then $m_{K}(\chi)$ denotes the Schur index of χ over K. The simple component of the group algebra $K[G]$ corresponding to χ is denoted by $A(\chi, K)$. Its index is exactly $m_{K}(\chi)$. If L / K is normal, $\mathscr{G}(L / K)$ is the Galois group of L over K.

In this paper we will prove the following:

Theorem. Let G be a finite group of exponent $s=l^{a} n$, where l is a rational prime and $(l, n)=1$. Let $k=Q\left(\zeta_{n}\right)$ if l is odd, let $k=Q\left(\zeta_{n}, \zeta_{4}\right)$ if $l=2$. Then, $m_{k}(\chi)=1$ for every irreducible character χ of G.

Remark. In Fong [2, Theorem 1], the above s denoted the order of G (instead of the exponent of G).

First we review

Brauer-Witt Theorem. Let χ be an irreducible character of a finite group G of exponent s. Let q be a prime number. Let K be a field of characteristic 0 with $K(\chi)=K$. Let L be the subfield of $K\left(\zeta_{s}\right)$ over K such that $\left[K\left(\zeta_{s}\right): L\right]$ is a power of q and $[L: K] \not \equiv 0$ $(\bmod q)$. Then there is a subgroup F of G and an irreducible character ξ of F with the following properties: (1) there is a normal subgroup N of F and a linear character ψ of N such that $\xi=\psi^{F}$ and $L(\xi)=L$, (2) $F / N \cong \mathscr{G}(L(\psi) / L)$, (3) $m_{L}(\xi)$ is equal to the q-part of $m_{R}(\chi)$, (4) for every $f \in F$ there is a $\tau(f) \in \mathscr{G}(L(\psi) / L)$ such that $\psi\left(f n f^{-1}\right)=\tau(f)(\psi(n))$ for all $n \in N$, and (5) $A(\xi, L)$ is isomorphic to the crossed product $(\beta, L(\psi) / L)$ where, if S is a complete set of coset representatives of N in $F(1 \in S)$ with $f f^{\prime}=n\left(f, f^{\prime}\right) f^{\prime \prime}$ for $f, f^{\prime}, f^{\prime \prime} \in S$, $n\left(f, f^{\prime}\right) \in N$, then $\beta\left(\tau(f), \tau\left(f^{\prime}\right)\right)=\psi\left(n\left(f, f^{\prime}\right)\right)$.

