THE RANGE OF A CONTRACTIVE PROJECTION ON AN L_p -SPACE

S. J. BERNAU AND H. ELTON LACEY

Suppose (X, Σ, μ) is a measure space, $1 \leq p < \infty$ and $p \neq 2$. Let $L_p = L_p(X, \Sigma, \mu)$ be the usual space of equivalence classes of Σ -measurable functions f such that $|f|^p$ is integrable. A contractive projection on L_p is a linear operator $P: L_p \rightarrow L_p$ such that $P^2 = P$ and $||P|| \leq 1$. In this paper we give a complete description of such contractive projections in terms of conditional expectation operators. We also show that a closed subspace M of L_p is the range of a contractive projection if and only if M is isometrically isomorphic to another L_p -space. Another sufficient condition shows, in particular, that every closed vector sublattice of an L_p -space is the range of a positive contractive projection.

Most of our results are known. The case of finite μ was treated, for p = 1, by Douglas [2] and for 1 by Ando [1] whoshowed how to reduce this case to that of <math>p = 1. These authors obtained our necessary and sufficient condition. Grothendieck [4] considered p = 1 and general μ and showed that the range of a contractive projection on L_1 is isometrically isomorphic to another L_1 -space. Wulbert [11] showed that a positive contractive projection on L_1 which is also L_{∞} contractive is a conditional expectation, and pointed out that his proofs applied for p > 1. Tzafriri [10] showed that for general μ the range of a contractive projection on L_p is isometrically isomorphic to another L_p -space. In [5] we gave an outline, based on Tzafriri's, of another proof of this fact.

We obtain complete generalizations of the Douglas-Ando results to the case of an arbitrary measure μ . We have chosen to give our proofs in detail. It seems easier not to reduce the case p > 1to the case p = 1. The proofs for p > 1 often use duality arguments which are just not available for p = 1. By giving such proofs, generalizations to reflexive Banach function spaces may be possible. Some such generalizations have been tried by Rao [8] but his reduction from arbitrary norms to the L_1 case is faulty and his Theorem 2.7 is false in general (see Remark 4.4). Duplissey [3] considers Banach function spaces but requires $||Pf||_{\infty} \leq ||f||_{\infty}$ as well as P contractive. We also avoid reducing to the case of finite measures. This device turns out to be unnecessary, and needlessly complicated.

We have deliberately omitted the cases 0 , except in the appendix, and the case <math>p = 2. A contractive projection on Hilbert