CHARACTERIZATION OF A FUNCTION BY CERTAIN INFINITE SERIES IT GENERATES

Charles K. Chui and Philip W. Smith

Abstract

Let A be a set of real numbers and F be a class of complex-valued functions defined on the real line such that for each $f \in F$ the infinite series $S(x, f)=\sum_{k=1}^{\infty} f(k x)$ converges for every nonzero x in A. If $0 \in A$, we set $S(0, f)=f(0)$. It seems to be an interesting problem to study the different sets A and function classes F such that each $f \in F$ is uniquely determined by the sums $S(x, f)$ where $x \in A$. Clearly, the larger the class F is studied, the larger set A is needed to guarantee uniqueness. We have positive results for a class of entire functions of exponential type and for fairly large classes of continuous functions. Some examples are also given to show that in general A cannot be too small.

1. Introduction. For a function f holomorphic in the open unit disc U of the complex plane and continuous on the closure of U, let

$$
s_{n}(f, \delta)=\frac{1}{n} \sum_{k=1}^{n} f\left(e^{i 2 \pi \delta k / n}\right), \quad n=1,2, \cdots, 0<\delta \leqq 1
$$

Sufficient conditions on the function f were given in [2,5] to guarantee that f is uniquely determined by the means $s_{n}(f, 1)$, and in [3] both positive and negative results were given for the case $0<\delta<1$. The annulus case was also studied in [4]. In this paper we study a related problem for an unbounded interval.

Let A be a set of real numbers and F be a class of complexvalued functions defined on the real line R such that for each $f \in F$, the infinite series $S(x, f)=\sum_{k=1}^{\infty} f(k x)$ converges for every nonzero $x \in A$. If $0 \in A$, we denote $S(0, f)=f(0)$. We study various sets A and various function classes F such that each $f \in F$ is uniquely determined by the sums $S(x, f)$ where $x \in A$. Some examples will be given to show that in general A cannot be too small.
2. Results for entire functions. We start with a fairly small function class. For $r>0$, let $P W(r \pi, 1)$ be the class of all entire functions $f(z)$ of exponential type at most $r \pi$ such that $f(x) \in L^{2}(R)$ and that for some $p>1, f(n / r)=0\left(|n|^{-p}\right)$ for $n= \pm 1, \pm 2, \cdots$. Let Z be the set of all integers. We have the following theorem of the Carlson type.

Theorem 1. Every function f in $P W(\pi, 1)$ is uniquely determined by the sequence $S(n, f)$ where $n \in Z$.

