METRIZATION OF SPACES WITH COUNTABLE LARGE BASIS DIMENSION

GARY GRUENHAGE AND PHILLIP ZENOR

With the following results, we generalize known metrization theorems for spaces with large basis dimension 0 i.e., non-archimedian spaces) to the higher dimensions: Theorem. If X is a normal Σ -space with countable large basis dimension, then X is metrizable. Theorem. If X is a normal $w\Delta$ -space with countable large basis dimension, then X is metrizable.

I. Introduction. A collection Γ of subsets of a set X is said to have rank 1 if whenever g_1 and g_2 are in Γ with $g_1 \cap g_2 \neq \emptyset$ then $g_1 \subset g_2$ or $g_2 \subset g_1$. According to P. J. Nyikos [13], a topological space X has large basis dimension $\leq n$ (denoted Bad $X \leq n$) if X has a basis which is the union of n+1 rank 1 collections of open sets. X has countable large basis dimension (Bad $X \leq R_0$) if X has a basis which is the union of a countable number of rank 1 collections such that each point of X has a basis belonging to one of the collections (a property which is automatically true in the finite case). Bad X coincides with Ind X and dim X for metric spaces.

Spaces having large basis dimension 0 are usually called non-archimedian spaces. Theorems of Nyikos [11] and A. V. Archangelskii [3] show that a non-archimedian space is metrizable if and only if it is a Σ -space or a $w\Delta$ -space. In this paper we show that these results are valid, under mild assumptions, for the higher dimensions. Our results also improve a result of G. Gruenhage [6], who showed that compact spaces having finite large basis dimension are metrizable.

II. Main results. According to Nyikos [11], a tree of open sets is a collection Γ of open sets such that if $g \in \Gamma$, then the set $\{g' \in \Gamma \mid g' \supset g\}$ is well-ordered by reverse inclusion; that is, $g \leq g'$ if and only if $g \supset g'$. Nyikos shows that the rank 1 collections for spaces with Bad $X \leq \aleph_0$ can be considered as rank 1 trees of open sets. The following fact will be used in our proofs:

LEMMA 1. Let T be a rank 1 tree of open subsets of a regular space X which contains a basis at each point of a subset X' of X. Then if $\mathcal U$ is a cover of X' by open subsets of X, there exists a subset T' of T such that

- (i) T' is a cover of X';
- (ii) the elements of T' are pairwise disjoint;