A GENERAL RATIO ERGODIC THEOREM FOR SEMIGROUPS

SHIGERU HASEGAWA AND RYOTARO SATO

The purpose of this note is to prove a ratio ergodic theorem, which is a continuous parameter version of Chacon's general ergodic theorem.

Let (X, \mathcal{F}, μ) be a σ -finite measure space and $L_1 = L_1(X, \mathcal{F}, \mu)$ the Banach space of equivalence classes of integrable complex-valued functions on X. Let $\Gamma = \{T_t; t > 0\}$ be a strongly continuous semigroup of linear contractions on L_1 . It then follows (cf. [6, §4]) that for any $f \in L_1$ there exists a scalar function $T_i f(x)$, measurable with respect to the product of the Lebesgue measurable subsets of $(0, \infty)$ and \mathcal{F} , such that $T_i f(x)$ belongs to the equivalence class of $T_i f$ for each t > 0. Moreover there exists a set N(f) with $\mu(N(f)) = 0$, dependent on f but independent of t, such that if $x \notin N(f)$, then $T_i f(x)$ is integrable on every finite interval (a, b) and the integral $\int_a^b T_i f(x) dt$, as a function of x, belongs to the equivalence class of $\int_a^b T_i f dt$.

THEOREM. Let $p_i(x)$ be a nonnegative function on $(0,\infty) \times X$, measurable with respect to the product of the Lebesgue measurable subsets of $(0,\infty)$ and \mathcal{F} , such that $f \in L_1$ and $|f| \leq p_s$ for some s imply $|T_i f| \leq p_{s+i}$ for all t > 0. Then for any $f \in L_1$ the limit

$$\lim_{b\to\infty}\int_0^b T_i f(x)\,dt \Big/ \int_0^b p_i(x)\,dt$$

exists and is finite a.e. on $\left\{x; \int_0^\infty p_t(x)dt > 0\right\}$.

LEMMA. Let T be a linear contraction on L_1 and $\{p_n; n \ge 0\}$ a sequence of nonnegative measurable functions on X such that $f \in L_1$ and $|f| \le p_n$ for some n imply $|Tf| \le p_{n+1}$. If $g \in L_1$, then

$$\lim_{n} p_n(x) / \sum_{i=0}^{n-1} p_i(x) = 0$$

a.e. on

$$\left\{x; \sum_{i=0}^{\infty} p_i(x) > 0 \text{ and } \lim_{n} \left|\sum_{i=0}^{n} T^i g(x) / \sum_{i=0}^{n} p_i(x)\right| > 0\right\}.$$