KOROVKIN APPROXIMATIONS IN L_p -SPACES

W. KITTO AND D. E. WULBERT

The main result is a characterization of finite Korovkin sets for positive operators in l_p . It follows that a finite set containing a positive function is a Korovkin set in l_p if and only if it is a Korovkin set in c_0 . The methods also show:

PROPOSITION. Let X be a compact subset of \mathbb{R}^n . Let K be a subspace of C(X) containing the constants. If K is a Korovkin set in C(X), then K is Korovkin set in $L_p(X)$.

Several related results are also given. For example a question of G. G. Lorentz about the restrictions of Korovkin set in C(X) to a subset $Y \subseteq X$ is answered.

Let \mathscr{L} be a class of operators on a Banach space E. A subset $K \subseteq E$ is an $\mathscr{L}\text{-}Korovkin$ set if whenever

- (i) $\{L_i\}$ is a bounded sequence in \mathscr{L} , and
- (ii) $L_i k \rightarrow k$ for each $k \in K$;

we have

(iii) $L_i f \rightarrow f$ for each f in E.

Let \mathscr{L}^1 be the class of norm one operators on E. If E is also a lattice, let \mathscr{L}^+ denote the positive operators on E; and, $\mathscr{L}^{1,+} = \mathscr{L}^1 \cap \mathscr{L}^+$.

After Korovkin showed that $\{1, x, x^2\}$ is an \mathcal{L}^+ -Korovkin set in C[0, 1], interest in this field has been in characterizing the Korovkin subsets of the classic Banach spaces.

Papers by Berens and Lorentz [3], Franchetti [8, 9], Krasnosilskii and Lifsic [13], Lorentz [14], Saskin [18], Scheffold [19], and Wulbert [22] identified the various types of Korovkin sets in C(X) spaces. Berens and Lorentz [3] have essentially characterized the $\mathcal{L}^{1,+}$ -Korovkin subsets of L_1 spaces (see §3 of this article, also see [Lorentz, 14] and [Wulbert, 22]), and Dzjadyk [7] has shown that $\{1, \sin x, \cos x\}$ is an \mathcal{L}^+ -Korovkin set in $L_p[0, 2\pi]$. (See also [James, 11], and [Zaricka, 24].)

The results here are related to identifying \mathscr{L}^+ -Korovkin subsets of L_p -spaces. A sufficient condition is presented that encompasses the known (and the suspected) \mathscr{L}^+ -Korovkin sets. For example each \mathscr{L}^+ -Korovkin set in C[a, b] that contains constants is also an \mathscr{L}^+ -Korovkin set in $L_p[a, b]$. The main result given is a characterization of finite \mathscr{L}^+ -Korovkin sets in l_p . A consequence of this characterization is that the l_p spaces have the same finite \mathscr{L}^+ -Korovkin sets. That is, if K is a finite subset of both l_p and l_p , and l_p contains a