THE CENTRALISER OF $E \otimes_{\lambda} F$

A. W. WICKSTEAD

If E is a real Banach space then $\mathscr{B}(E)$ is the space of all bounded linear operators on E, and $\mathscr{K}(E)$ the subspace of M-bounded operators, i.e. the centraliser of E. Two Banach spaces E and F are considered as well as the tensor product $E \otimes_{\lambda} F$. There is a natural mapping of the algebraic tensor product $\mathscr{K}(E) \odot \mathscr{K}(F)$ into $\mathscr{K}(E \otimes_{\lambda} F)$. It is shown that $\mathscr{K}(E \otimes_{\lambda} F)$ is precisely the strong operator closure, in $\mathscr{B}(E \otimes_{\lambda} F)$, of its image.

1. Definitions and statement of results. A linear operator T on a real Banach space E is M-bounded if there is $\lambda > 0$ such that if $e \in E$ and D is a closed ball in E containing λe and $-\lambda e$, then $Te \in D$. The centraliser of E, $\mathcal{K}(E)$, is the commutative Banach algebra of all M-bounded linear operators on E. Let K denote the unit ball of E^* , the Banach dual of E, equipped with the weak* topology. We denote the set of extreme points of a convex set E by E(E). In [2], Theorem 4.8 it is shown that a bounded linear operator E on E is E bounded if and only if each point of E is an eigenvalue for E, the adjoint of E. Thus there is a real valued function E on E is E such that E is an eigenvalue for E on E the adjoint of E.

An L-ideal in a real Banach space is a subspace I with a complementary direct summand J such that $||i|| + ||j|| = ||i+j|| (i \in I, j \in J)$. The sets $I \cap \mathcal{E}(K)$ for I a weak*-closed L-ideal in E* form the closed sets of the structure topology on $\mathcal{E}(K)$. The map $T \mapsto \tilde{T}$ is an isometric algebra isomorphism of $\mathcal{E}(E)$ onto the bounded structurally continuous real valued functions on $\mathcal{E}(K)$ with the supremum norm and pointwise multiplication ([2], Theorem 4.9).

We shall consider two Banach spaces E and F, K will retain its meaning and M will denote the corresponding subset of F^* . We use $E \odot F$ to denote the algebraic tensor product of E and F. We shall consider the norm

$$\left\|\sum_{i=1}^n e_i \otimes f_i
ight\|_{\lambda} = \sup\left\{\left|\sum_{i=1}^n k(e_i)m\left(f_i
ight)\right|: k \in K, \ m \in M
ight\}$$
 .

 $E \odot_{\lambda} F$ will denote $E \odot F$ with this norm, and $E \bigotimes_{\lambda} F$ its completion. We may identify $E \bigotimes_{\lambda} F$ concretely in a number of ways. The formula $(k,m) \mapsto \sum_{i=1}^n k(e_i) m(f_i)$ defines a real valued function on $K \times M$. Such functions are continuous and affine in each variable. $||\sum_{i=1}^n e_i \otimes f_i||_{\lambda}$ is the same as the supermum norm for such a function, so we may identify $E \bigotimes_{\lambda} F$ with a subspace H, the closure of