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THE RANGE OF ANALYTIC EXTENSIONS

J. GLOBEVNIK

Denote by Δ, J, dΔ the open unit disc in C, its closure
and its boundary, respectively. Let X be a complex Banach
space and denote by s^{X) the class of all non-empty sets
P c X having the following property: given any closed set
FadΔ of measure 0 and any continuous function f:F-*P
there exists a continuous extension f: Δ —> X of /, analytic
on Δ and satisfying f(Δ — F) c Int P.

THEOREM. PeJ^(X) if and only if IntP is connected,
locally connected at every point of P and satisfies Pa closure
(IntP).

THEOREM. If PcC consists of more than one point then
PeJ^(C) if and only if given any F and / as above there
exists a continuous extension /: J —>Cof /, analytic on Δ and
satisfying/(I) c P.

This generalizes a theorem of Rudin which asserts that
such / exists if PcC is homeomorphic to Δ.

THEOREM. If P e ^ ( X ) then given any relatively open
set BadΔ, any relatively closed set FdB of measure 0 and
any continuous function f:F->P there exists a continuous
extension /: Δ\jB->X of /, analytic on Δ and satisfying
f~((Δ\jB)-F)czIntP.

()• Introduction* Throughout, we denote by zf, I and dΔ the
open unit disc in C, its closure and its boundary, respectively. If
I is a complex Banach space and r > 0 we write Br(X) = {xeX:
\\x\\ < r). Let xeX and S, Γ c l We wr i te x + S =_{# + u:ueS}

and S + T = {u + v: u e S, v e T}. We denote by Int S, S the interior
of S and the closure of S, respectively. If F is a compact Hausdorff
space we denote by C(F, X) the set of all continuous functions from
F to X and write C(F) for C(F, C). If B c dΔ is a relatively open
set we denote by HB(Δ, X) the set of all continuous functions from
Δ U B to X which are analytic on Δ. For HdΔ(Δ, X) we write A(Δ, X)
and for A(Δ, C), the disc algebra, we write A{A). We denote the
set of all positive integers by N. If α, b e R, a < b we write
[α, b] = {t 6 R: a ^ t ^ 6} and we denote [0, 1] by /.

The well known Rudin-Carleson theorem [3, 19, 22] states that
given a closed set FcdΔ of measure 0 and /6C(F) there exists an
extension feA(Δ) of / satisfying

max \f(z)\ = max | f(s) \ .
zeά seF
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