THE RANGE OF ANALYTIC EXTENSIONS

J. GLOBEVNIK

Denote by Δ , $\overline{\Delta}$, $\partial \Delta$ the open unit disc in C, its closure and its boundary, respectively. Let X be a complex Banach space and denote by $\mathscr{A}(X)$ the class of all non-empty sets $P \subset X$ having the following property: given any closed set $F \subset \partial \Delta$ of measure 0 and any continuous function $f: F \to P$ there exists a continuous extension $\tilde{f}: \overline{\Delta} \to X$ of f, analytic on Δ and satisfying $\tilde{f}(\overline{\Delta} - F) \subset \operatorname{Int} P$.

THEOREM. $P \in \mathscr{N}(X)$ if and only if $\operatorname{Int} P$ is connected, locally connected at every point of P and satisfies $P \subset \operatorname{closure}(\operatorname{Int} P)$.

THEOREM. If $P \subset C$ consists of more than one point then $P \in \mathscr{S}(C)$ if and only if given any F and f as above there exists a continuous extension $\hat{f}: \bar{d} \to C$ of f, analytic on d and satisfying $\tilde{f}(\bar{d}) \subset P$.

This generalizes a theorem of Rudin which asserts that such \hat{f} exists if $P \subset C$ is homeomorphic to $\bar{\mathcal{A}}$.

THEOREM. If $P \in \mathscr{H}(X)$ then given any relatively open set $B \subset \partial A$, any relatively closed set $F \subset B$ of measure 0 and any continuous function $f: F \to P$ there exists a continuous extension $\tilde{f}: A \cup B \to X$ of f, analytic on A and satisfying $\tilde{f}((A \cup B) - F) \subset \operatorname{Int} P$.

0. Introduction. Throughout, we denote by Δ , $\overline{\Delta}$ and $\partial \Delta$ the open unit disc in C, its closure and its boundary, respectively. If X is a complex Banach space and r > 0 we write $B_r(X) = \{x \in X: \|x\| < r\}$. Let $x \in X$ and $S, T \subset X$. We write $x + S = \{x + u: u \in S\}$ and $S + T = \{u + v: u \in S, v \in T\}$. We denote by Int S, \overline{S} the interior of S and the closure of S, respectively. If F is a compact Hausdorff space we denote by C(F, X) the set of all continuous functions from F to X and write C(F) for C(F, C). If $B \subset \partial \Delta$ is a relatively open set we denote by $H_B(\Delta, X)$ the set of all continuous functions from $\Delta \cup B$ to X which are analytic on Δ . For $H_{\partial d}(\Delta, X)$ we write $A(\Delta, X)$ and for $A(\Delta, C)$, the disc algebra, we write $A(\Delta)$. We denote the set of all positive integers by N. If $a, b \in R$, a < b we write $[a, b] = \{t \in R: a \leq t \leq b\}$ and we denote [O, 1] by I.

The well known Rudin-Carleson theorem [3, 19, 22] states that given a closed set $F \subset \partial \Delta$ of measure 0 and $f \in C(F)$ there exists an extension $\tilde{f} \in A(\Delta)$ of f satisfying

$$\max_{z \in \overline{J}} |\widetilde{f}(z)| = \max_{s \in F} |f(s)|.$$