COUNTABLE SPACES WITHOUT POINTS OF FIRST COUNTABILITY

RONNIE LEVY

In this paper we show that there are 2^c non-homeomorphic countable regular spaces, each of which has no point of first countability. Several specific countable regular spaces are shown not to be homeomorphic.

1. Preliminaries. A countable space need not be first countable. One example of such a space is $N \cup \{p\}$ where $p \in \beta N - N$ and the topology is the relative topology of βN . This space, however, has many points of first countability—indeed all of the points of N are isolated. Several examples of countable spaces without points of first countability are known to exist.

N denotes the space of natural numbers including 0, Q denotes the space of rational numbers, and **R** denotes the space of reals. The cardinal of **R** is denoted c. If X is a completely regular Hausdorff space, βX is the Stone-Cech compactification of X. If X and Y are spaces and $f: X \to Y$ is a continuous surjection, f is *irreducible* if there is no proper closed subset K of X such that f(K) = Y. It is well-known (see for example [11], 10.48) that if X and Y are compact Hausdorff spaces and $f: X \to Y$ is a continuous surjection, there is a closed subset K of X such that f(K) = Y. It is well-known (see for example [11], 10.48) that if X and Y are compact Hausdorff spaces and $f: X \to Y$ is a continuous surjection, there is a closed subset K of X such that f(K) = Y and the restriction of f to K is irreducible. A space X is *resolvable* if X contains disjoint dense subsets. A space X is homogeneous if for any pair of points $p, q \in X$, there is a homeomorphism $f: X \to X$ such that f(p) = q. A rigid space is a space whose only auto-homeomorphism is the identity.

For $n \in N$, let R_n be $N^{\{1,\dots,n\}}$. Since for n = 0, $\{1,\dots,n\} = \emptyset$, $R_0 = \{\emptyset\}$. The empty set, when viewed as the element of R_0 , is denoted p_0 . Let $S = \bigcup_{n \in N} R_n$ and define an order \leq on S by $p \leq q$ if and only if $p \in R_m$, $q \in R_n$ with $m \leq n$ and $q \mid \{1,\dots,m\} = p$. (S, \leq) is a tree (see [6]) and is clearly countably infinite. For $x \in S$, A_x is the set $\{p \in S : x \leq p, x \neq p, \text{ and } x \leq y \leq p \text{ implies } x = y \text{ or } y = p\}$; thus, A_x is the set of immediate successors of x. For $x \in S$, $U \subseteq N$, let $K_x^U =$ $\{x\} \cup \{p \in S : \text{ There is a } q \in A_x \text{ such that the last entry of } q \text{ is an element}$ of U and $q \leq p\}$.

If $p \in \beta N - N$, that is, p is a free ultrafilter on N, then Σ_p denotes the subspace $N \cup \{p\}$ of βN . Two points p and q of $\beta N - N$ are the same βN -type, or simply the same type, if Σ_p is homeomorphic to Σ_q , or,