COUNTABLE SPACES WITHOUT POINTS OF FIRST COUNTABILITY

Ronnie Levy

Abstract

In this paper we show that there are 2^{c} non-homeomorphic countable regular spaces, each of which has no point of first countability. Several specific countable regular spaces are shown not to be homeomorphic.

1. Preliminaries. A countable space need not be first countable. One example of such a space is $N \cup\{p\}$ where $p \in \beta N-N$ and the topology is the relative topology of βN. This space, however, has many points of first countability-indeed all of the points of N are isolated. Several examples of countable spaces without points of first countability are known to exist.
N denotes the space of natural numbers including $0, Q$ denotes the space of rational numbers, and \mathbf{R} denotes the space of reals. The cardinal of \mathbf{R} is denoted c. If X is a completely regular Hausdorff space, βX is the Stone-Cech compactification of X. If X and Y are spaces and $f: X \rightarrow Y$ is a continuous surjection, f is irreducible if there is no proper closed subset K of X such that $f(K)=Y$. It is well-known (see for example [11], 10.48) that if X and Y are compact Hausdorff spaces and $f: X \rightarrow Y$ is a continuous surjection, there is a closed subset K of X such that $f(K)=Y$ and the restriction of f to K is irreducible. A space X is resolvable if X contains disjoint dense subsets. A space X is homogene ous if for any pair of points $p, q \in X$, there is a homeomorphism $f: X \rightarrow X$ such that $f(p)=q$. A rigid space is a space whose only auto-homeomorphism is the identity.

For $n \in N$, let R_{n} be $N^{\{1, \cdots, n\}}$. Since for $n=0,\{1, \cdots, n\}=\varnothing$, $R_{0}=\{\varnothing\}$. The empty set, when viewed as the element of R_{0}, is denoted p_{0}. Let $S=\cup_{n \in N} R_{n}$ and define an order \leqq on S by $p \leqq q$ if and only if $p \in R_{m}, q \in R_{n}$ with $m \leqq n$ and $q \mid\{1, \cdots, m\}=p$. (S, \leqq) is a tree (see [6]) and is clearly countably infinite. For $x \in S, A_{x}$ is the set $\{p \in S: x \leqq p, x \neq p$, and $x \leqq y \leqq p$ implies $x=y$ or $y=p\}$; thus, A_{x} is the set of immediate successors of x. For $x \in S, U \subseteq N$, let $K_{x}^{U}=$ $\{x\} \cup\left\{p \in S\right.$: There is a $q \in A_{x}$ such that the last entry of q is an element of U and $q \leqq p\}$.

If $p \in \beta N-N$, that is, p is a free ultrafilter on N, then Σ_{p} denotes the subspace $N \cup\{p\}$ of βN. Two points p and q of $\beta N-N$ are the same βN-type, or simply the same type, if Σ_{p} is homeomorphic to Σ_{q}, or,

