REAL REPRESENTATIONS OF GROUPS WITH A SINGLE INVOLUTION

I. M. ISAACS

If G is a finite group containing just one involution and G has a faithful, absolutely irreducible real representation, then G has order 2.

This was proved by Jerry Malzan [2] using the classification of simple groups with dihedral Sylow 2-subgroups. The purpose of this note is to give a proof of Malzan's theorem which assumes nothing but some elementary character theory.

Let G have the unique involution z and assume $G > \langle z \rangle$. Let $\chi \in \operatorname{Irr}(G)$ be faithful and real valued (where $\operatorname{Irr}(G)$ is the set of complex irreducible characters of G). By the Frobenius-Schur theory (see Lemma 4.4 and Corollary 4.15 of [1]) it follows that in order to prove that χ is not afforded by a real representation, it suffices to show that

$$\sum_{g \in G} \chi(g^2) \neq |G|$$
.

THEOREM. In the above situation we have

$$\sum_{g \in G} \chi(g^2) < |G|$$
 .

Proof. Each $g \in G$ may be uniquely factored as $g = \sigma c$ where σ has 2-power order and $c \in C(\sigma)$ has odd order. We write $\sigma = g_2$. For each cyclic 2-subgroup $U \subseteq G$ we set $Y(U) = \{g \in G | \langle g_2 \rangle = U\}$. Thus the sets Y(U) partition G. We shall prove

$$\sum_{g \in Y(1)} \chi(g^2) = \sum_{g \in Y(\langle z
angle)} \chi(g^2) < |\mathit{G}|/2$$

$$\sum_{g \in Y(U)} \chi(g^2) \leqq 0 \quad ext{if} \quad |U| = 4$$

$$\sum_{g \in Y(U)} \chi(g^2) = 0 \quad ext{if} \quad |U| \geqq 8$$
 .

The theorem will then follow.

Proof of (1). Y(1) is the set of elements of G of odd order and since $z \in \mathbb{Z}(G)$, we have $Y(\langle z \rangle) = z \, Y(1)$ and so $\sum_{Y(1)} \chi(g^2) = \sum_{Y(\langle z \rangle)} \chi(g^2)$. Since the map $g \mapsto g^2$ is a permutation of Y(1), the common value of these sums is

$$s = \sum_{g \in Y(1)} \chi(g)$$
.