A CHARACTERIZATION FOR COMPACT CENTRAL DOUBLE CENTRALIZERS ON C*-ALGEBRAS

SIN-EI TAKAHASI

The purpose of this note is to give a characterization for compact central double centralizers on any C^* -algebra A in view of the Dixmier's representation theorem of central double centralizers on A. The proof makes use of the Urysohn's lemma for spectra of C^* -algebras and algebraic properties of a central double centralizer.

Throughout the note, A denotes a C^* -algebra. Let Prim A denote the structure space of A, that is the set of all primitive ideals of A, with the hull-kernel topology. Let M(A) denote the double centralizer algebra of A and Z(M(A)) the center of M(A). Busby [1] has noted that the algebra $C^b(\operatorname{Prim} A)$ of all bounded continuous complex-valued functions on Prim A can be canonically identified with Z(M(A)), which is equivalent with a result of Dixmier ([5], Theorem 5). Moreover, we can regard the algebra Z(M(A)) as the algebra of all bounded linear operators T on A such that (Tx)y = x(Ty) for all $x, y \in A$. In its final form, this identification Φ between Z(M(A)) and $C^b(Prim A)$ can be described as follows: If $T \in Z(M(A))$, then $T\alpha + P = \Phi(T)(P)(\alpha + P)$ for all $\alpha \in A$ and $P \in Prim A$, where a + P for $P \in Prim A$ denotes the canonical image of a in A/P (Dauns and Hofmann theorem [3] shows that every functions in $C^b(\text{Prim }A)$ can be realized uniquely in this way). We will characterize the set of all compact central double centralizers on A in view of this representation theorem of Z(M(A)). Our characterization is similar to ones established by Kellogg [6] and Ching and Wong [2] for H^* -algebras, and this is also a generalization of one proved by Rowlands [7] for dual B^* -algebras.

Let $Z_c(M(A))$ denote the compact central double centralizers on A. If LC(A) is the algebra of all compact operators on A, then $Z_c(M(A)) = Z(M(A)) \cap LC(A)$, so that $Z_c(M(A))$ is a closed ideal of Z(M(A)). Let I_c be the set of all functions f in $C^b(\operatorname{Prim} A)$ such that for any closed compact subset K in $\operatorname{supp}(f)$, A/I_K is finite dimensional. Here $\operatorname{supp}(f)$ denotes the set of all $P \in \operatorname{Prim} A$ such that $f(P) \neq 0$, and I_K denotes a closed two-sided ideal of A with $\operatorname{Prim}(A/I_K) \simeq K$ (cf. [4], § 3.2). Note that if K is the empty set, then A/I_K is zero-dimensional, so that I_C contains the zero function. Now I_C is a closed ideal in $C^b(\operatorname{Prim} A)$. For since $\operatorname{supp}(f) \supset \operatorname{supp}(fg)$ for each f, g in $C^b(\operatorname{Prim} A)$, I_C is an ideal in $C^b(\operatorname{Prim} A)$. Let $\{f_n\}$ be a sequence of functions in I_C which converges uniformly