ON INTEGRAL REPRESENTATIONS OF PIECEWISE HOLOMORPHIC FUNCTIONS

Gerhard K. Kalisch

Let D be the interior of the unit circle in C, D^{c} its exterior and T the unit circumference. We consider certain piecewise holomorphic functions that are holomorphic in D and also in D^{c}. This paper deals with those piecewise holomorphic functions that are representable by means of complex Poisson-Stieltjes integrals on T; we call this set of functions P_{1}. The set of all piecewise holomorphic functions (holomorphic in D and in D^{c}) we call P. Earlier work-see Rolf Nevanlinna, Eindeutige Analytische Funktionen, Springer, Berlin, 1953 and references there-dealt with positive (Herglotz-Riesz) or real (Nevanlinna) measures; we shall use here the entire space M of bounded complex Borel measures on T. This gives the theory more flexibility. We consider characterizations of functions in P representable by means of complex Poisson-Stieltjes integrals, uniqueness questions, the nature of the mapping between the subset P_{1} of P of representable functions and M, as well as the ring structures in M (under convolution) and P_{1} (Hadamard products), and questions of derivatives and integrals. We end with an application to Fourier-Stieltjes moments relative to measues in M.

We call a function $F \in P$ representable if there is a measure $m \in M$ so that $F=\int P_{C} d m+k$ where $P_{C}=P_{C}(z)=\left(e^{i t}+z\right) /\left(e^{i t}-z\right)$ is the complex Poisson kernel, k is a piecewise constant function in P, and where the limits of integration are omitted when they are 0 and 2π respectively. A function $F \in P$ is said to be of real type if $F\left(\bar{z}^{-1}\right)=-\overline{F(z)}$ for all $z \in D \cup D^{c}$. The functions

$$
\begin{equation*}
G=G_{F}(z)=\frac{1}{2}\left(F(z)-\overline{F\left(\bar{z}^{-1}\right)}\right), H=H_{F}(z)=-\frac{1}{2}\left(i F(z)+i \overline{F\left(\bar{z}^{-1}\right)}\right) \tag{1}
\end{equation*}
$$

are of real type; we have $F=G+i H$ and $F \in P_{1}$ if and only if G and H are in P_{1}. - The decomposition of the complex measure m into its real and imaginary parts is given by $m=(1 / 2(m+\bar{m}))+$ $i((1 / 2 i)(m-\bar{m}))=(\operatorname{Re} m)+i(\operatorname{Im} m)$ where \bar{m} is defined as usual by $\int \bar{g} d m=\int \bar{g} d m$ for continuous functions g on T. If the representable function $F \in P_{1}$ is given by $F=\int P_{C} d m+k$, then $G_{F}=$ $\int P_{C} d(\operatorname{Re} m)+1 / 2(k-\bar{k})$ and $H_{F}=\int P_{C} d(\operatorname{Im} m)+(1 / 2 i)(k+\bar{k}) .-$ If $m \in M$, we write $\hat{m}_{j}=\int e^{-i j t} d m$.

