DETERMINATION OF A UNIQUE SOLUTION OF THE QUADRATIC PARTITION FOR PRIMES
 $$
p \equiv 1(\text { MOD } 7)
$$

Budh Singh Nashier and A. R. Rajwade

Abstract

Let p be a rational prime $\equiv 1(\bmod 7)$. Williams shows that a certain triple of a Diophantine system of quadratic equations has exactly six nontrivial solutions. We obtain here a congruence condition which uniquely fixes one of these six solutions. Further if 2 is not a seventh power residue $(\bmod p)$ then we obtain a congruence $(\bmod p)$ for $2^{(p-1) / 7}$ in terms of the above uniquely fixed solution.

1. Introduction. Let e be an integer $\geqq 2$ and p a prime \equiv $1(\bmod e)$. Eulers criterion states that

$$
\begin{equation*}
D^{f} \equiv 1(\bmod p), \quad p=e f+1 \tag{1.1}
\end{equation*}
$$

if and only if D is an e th power residue $(\bmod p)$, so that if D is not an e th power residue $(\bmod p)$ then

$$
\begin{equation*}
D^{f} \equiv \alpha_{e}(\bmod p) \tag{1.2}
\end{equation*}
$$

for some e th root $\alpha_{e} \not \equiv 1(\bmod p)$ of unity.
Obviously $\alpha_{2}=-1$. For $D=2$ and $e=3,4,5,8$ Lehmer [2] gave an expression for α_{e} in terms of certain quadratic partition of p. For arbitrary e th power nonresidue D, Williams [6], [7] treated the cases $e=3,5$.

When $e=5$ Dickson [1] (Theorem 8, page 402) proved that for a prime $p \equiv 1(\bmod 5)$, the pair of Diophantine equations

$$
\left\{\begin{array}{l}
16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2} \tag{1.3}\\
x w=v^{2}-4 u v-u^{2}(x \equiv 1(\bmod 5))
\end{array}\right.
$$

has exactly four solutions. If one of these is (x, u, v, w) the other three are given by $(x,-u,-v, w),(x, v,-u,-w),(x,-v, u,-w)$. Lehmer [2] (case $k=5$) gave a method of fixing a solution uniquely. She proves that if 2 is a quintic nonresidue $(\bmod p)$ then

$$
\begin{align*}
& 2^{(p-1) / 5} \\
& \quad \equiv \frac{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x+20 u-10 v)}{w\left(125 w^{2}-x^{2}\right)+2(x w+5 u v)(25 w-x-20 u+10 v)} \quad(\bmod p) \tag{1.4}
\end{align*}
$$

for a unique solution (x, u, v, w) fixed by the condition

$$
\begin{equation*}
2 \mid u, v \equiv(-1)^{u / 2} x(\bmod 4) . \tag{1.4'}
\end{equation*}
$$

