CHARACTERS OF *P'*-DEGREE IN SOLVABLE GROUPS

THOMAS R. WOLF

We prove that $|I_p(G)| = |I_p(N(P))|$ for $P \in \text{Syl}(G)$, for solvable G. Here p is a prime and $I_p(G)$ is the set of irreducible characters ψ such that $(\psi(1), p) = 1$.

1. Introduction. The groups considered are finite and the group characters are defined over the complex numbers. McKay conjectured $|I_p(G)| = |I_p(N(P))|$ where $P \in Syl(G)$ for simple G and p = 2 [6]. I. M. Isaacs has proven the result when |G| is odd and p is any prime (Theorem 10.9 of [4]). We prove the result for solvable G. In fact we generalize this slightly to sets of primes and normalizers of Hall subgroups.

For characters χ and ψ of G, we let $[\chi, \psi]$ denote the inner product of χ and ψ . Let $N \leq G$ and $\theta \in IRR(N)$. We write $I_G(\theta)$ to denote the inertia group $\{g \in G | \theta^g = \theta\}$. We also write $IRR(G | \theta) =$ $\{\chi \in IRR(G) | [\chi_N, \theta] \neq 0\}$. Of course, character induction yields a oneto-one map from $IRR(I_G(\theta) | \theta)$ onto $IRR(G | \theta)$. If $\chi \in IRR(G | \theta)$; we say χ (or θ) is fully ramified with respect to G/N if $\chi_N = e\theta$ and $e^2 = |G: N|$. This will occur if $I_G(\theta) = G$ and χ vanishes off N.

Suppose that K/L is an abelian chief factor of G; $\gamma \in IRR(K)$; $\phi \in IRR(L)$; and $[\gamma_L, \phi] \neq 0$. If $K \cdot I_G(\phi) = G$, then one of the following occur:

- (a) $\gamma_L = \phi;$
- (b) γ and ϕ are fully ramified with respect to K/L, or

(c) $\phi^{\kappa} = \gamma$.

We note that $K \cdot I_G(\phi) = G$ whenever $I_G(\gamma) = G$. The results of these last two paragraphs are well known (e.g. see Chapter 6 of [5]); and we will use them without reference. In Theorem 3.3, we use known results about character triple isomorphisms (see §8 of [4] or Chapter 11 of [5]); otherwise, everything should be self-explanatory.

I would like to thank E. C. Dade for his preprint [1].

2. Extendability. A straightforward proof of Lemma 2.1 may be found in Lemma 10.5 of [4].

LEMMA 2.1. Assume $N \leq G$, $H \leq G$, NH = G, and $N \cap H = M$. Assume $\phi \in IRR(N)$ is invariant in G and $\phi_M \in IRR(M)$. Then $\chi \leftrightarrow \chi_H$ defines a one-to-one correspondence between $IRR(G|\phi)$ and $IRR(H|\phi_M)$.