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BANACH SPACES WHICH SATISFY LINEAR
IDENTITIES

BRUCE REZNICK

In 1935, Jordan and von Neumann proved that any Banach
space which satisfies the parallelogram law

\\χ + v\\2 + \\χ - y\\2 = 2(IM|2 + \\y\\η

for all elements x and y

must be a Hubert space.
Subsequent authors have found norm conditions weaker

than (1) which require a Banach space to be a Hubert space.
Notable examples include the results of Day, Lorch, Sene-
challe and Carlsson.

In this paper, we study nontrivial linear identities such as

(2) Σ ak\\ct(0)x0 + + Gk(n)xn\\p = 0 for all elements xt

on a Banach space X.

A necessary condition for (2) to hold in X is that \\x + ty\\v

must be a polynomial in t for all choices of elements x and y. A
sufficient condition for (2) to hold in X is that (2) must hold in the
field of scalars. Specific identities are presented including a generalized
parallelepiped law first observed by Koehler, and some isometric
results are stated.

2* The parallelogram law revisited. In 1909 [4], Frechet
proved the following result.

LEMMA 1 (Frechet). If g is continuous function on R and,
for all real r and s, equation (3) holds, then g is a polynomial with
degree less than N.

(3) 1L(-l)N

Proof. It is well-known that any sequence {an} satisfying

2r( — l)N~k( 7 )ak+M = 0 for all M is generated by a polynomial; that

is, there is a polynomial P with degree less than N for which an —

P(n).
In (3), put g{n) = an, s = 1 and let r range over the integers.

Then there is a polynomial P with P(n) = an = g(n). Now put
g(n/2) = bn, s = 1/2 and let r range over the half-integers. There is
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