BANACH SPACES WHICH SATISFY LINEAR IDENTITIES

Bruce Reznick

In 1935, Jordan and von Neumann proved that any Banach space which satisfies the parallelogram law

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \tag{1}
\end{equation*}
$$

must be a Hilbert space.
Subsequent authors have found norm conditions weaker than (1) which require a Banach space to be a Hilbert space. Notable examples include the results of Day, Lorch, Senechalle and Carlsson.

In this paper, we study nontrivial linear identities such as
(2) $\sum_{k=0}^{m} a_{k}\left\|c_{k}(0) x_{0}+\cdots+c_{k}(n) x_{n}\right\|^{p}=0$ for all elements x_{i}
on a Banach space X.
A necessary condition for (2) to hold in X is that $\|x+t y\|^{p}$ must be a polynomial in t for all choices of elements x and y. A sufficient condition for (2) to hold in X is that (2) must hold in the field of scalars. Specific identities are presented including a generalized parallelopiped law first observed by Koehler, and some isometric results are stated.
2. The parallelogram law revisited. In 1909 [4], Fréchet proved the following result.

Lemma 1 (Fréchet). If g is continuous function on \boldsymbol{R} and, for all real r and s, equation (3) holds, then g is a polynomial with degree less than N.

$$
\begin{equation*}
\sum_{k=0}^{N}(-1)^{N-k}\binom{N}{k} g(r+k s)=0 \tag{3}
\end{equation*}
$$

Proof. It is well-known that any sequence $\left\{a_{n}\right\}$ satisfying $\Sigma(-1)^{N-k}\binom{N}{k} a_{k+M}=0$ for all M is generated by a polynomial; that is, there is a polynomial P with degree less than N for which $\alpha_{n}=$ $P(n)$.

In (3), put $g(n)=a_{n}, s=1$ and let r range over the integers. Then there is a polynomial P with $P(n)=a_{n}=g(n)$. Now put $g(n / 2)=b_{n}, s=1 / 2$ and let r range over the half-integers. There is

