THE FOURIER STIELTJES ALGEBRA OF A TOPOLOGICAL SEMIGROUP WITH INVOLUTION

ANTHONY TO-MING LAU

Let S be a topological semigroup with a continuous involution. We study a subalgebra F(S) of the algebra of continuous weakly almost periodic functions on S. F(S) is translation invariant, closed under conjugation and contains constants. When S has an identity, then F(S) is the linear span of the cone of continuous positive definite functions on S. We show that there exists a norm $||\cdot||_{\mathcal{Q}}$ on F(S) such that $(F(S), ||\cdot||_{\mathcal{Q}})$ is a commutative Banach algebra which can be identified with the predual of a W^* -algebra $W^*(S)$. When S is a locally compact group, then F(S) is precisely the Fourier Stieltjes algebra of S. We also show that $\sigma(F(S))$, the spectrum of F(S), is a *-semigroup in $W^*(S)$, and study the relation of $\sigma(F(S_1))$ and $\sigma(F(S_2))$ when $F(S_1)$ and $F(S_2)$ are isometric isomorphic Banach algebras.

Recently, Dunkl and Ramirez [5] defined a 1. Introduction. subalgebra R(S) of the algebra WAP(S) of complex-valued continuous weakly almost periodic functions on S. The algebra R(S), called the representation algebra of S, is constructed by considering continuous representations of S into the unit ball of $L_{\infty}(X, \mu)$ with the weak*topology, where (X, μ) is some probability measure space. They showed that R(S) is translation invariant, closed under conjugation and contains all bounded continuous semi-characters on S. Furthermore R(S), with an appropriate norm, becomes a commutative Banach algebra and the dual of R(S) can be identified with a weak*-closed subalgebra of a commutative W^* -algebra. If G is a commutative locally compact group, then $R(G) = M(\widehat{G})^{\uparrow}$, the Fourier Stieltjes transform of the measure algebra on the dual group \hat{G} (see [6, p. 80]).

Our present work deals with the study of the subalgebra F(S)of WAP(S) of a topological *-semigroup S (i.e., a topological semigroup with a continuous involution). If S has an identity, then F(S) is the linear span of continuous positive definite function on S. Also if S is a commutative, then F(S) is contained in the representation algebra R(S). We show that F(S) can be identified with the predual of a W^* -algebra, $W^*(S)$. Furthermore F(S) with the predual norm is a commutative Banach algebra, called the Fourier Stieltjes algebra of S. The algebra F(S) is also translation invariant, closed under conjugation and contains all continuous *-semi-characters of