BANACH SPACES WITH POLYNOMIAL NORMS

BRUCE REZNICK

A Banach space X is said to be in the class \mathscr{P}_{2n} if, for all elements x and y, $||x + ty||^{2n}$ is a polynomial in real t. These spaces generalize L_{2n} and are precisely those Banach spaces in which linear identities can occur. We shall discuss further properties of \mathscr{P}_{2n} spaces, often in terms of the permissible polynomials $p(t) = ||x + ty||^{2n}$. For each n, the set of such polynomials forms a cone. All spaces in \mathcal{P}_2 are Hilbert spaces. If X is a two-dimensional real space in \mathscr{P}_4 , then it is embeddable in L_4 . This is not necessarily true for spaces with more dimensions or for $\mathscr{P}_{2n}, n \geq 3$. The question of embeddability is equivalent to the classical moment problem. All spaces in \mathscr{P}_{2n} are uniformly convex and uniformly smooth and thus reflexive. They obey generally weaker versions of the Hölder and Clarkson inequalities. Krivine's inequalities, shown to determine embeddability into L_p , $p \neq 2n$, fail in the even case.

1. Introduction. Throughout, we shall consider real Banach spaces, and, except where indicated, $L_{2n}(Y, \mu)$ with real-valued functions and real scalars. The phrase "X is embeddable in L_{2n} " is an abbreviation for "X is isometrically isomorphic to a subspace of $L_{2n}(Y, \mu)$ for some (Y, μ) ." Although \mathscr{P}_{2n} was introduced and motivated in [11], that paper and this one are largely independent.

2. Norm functions. Suppose $X = \langle x_1, \dots, x_m \rangle$ is the real vector space spanned by the x_i 's and ϕ is a real function of m real variables. Under what circumstances does $||\Sigma u_i x_i|| = \phi(u_1, \dots, u_m)$ make $(X, || \cdot ||)$ a Banach space? For $u = (u_1, \dots, u_m)$, let $\phi(u) = \phi(u_1, \dots, u_m)$. From the standard definition of the norm, it is evident that conditions (A), (B) and (C) are necessary and sufficient. (Here, t is an arbitrary real.)

(A) $\phi(\boldsymbol{u}) \ge 0$ and $\phi(\boldsymbol{v}) = 0$ implies $\phi(\boldsymbol{u}) \equiv \phi(\boldsymbol{u} + t\boldsymbol{v})$

(B) $\phi(t\boldsymbol{u}) = |t|\phi(\boldsymbol{u})$

(C) $\phi(\boldsymbol{u}) + \phi(\boldsymbol{v}) \ge \phi(\boldsymbol{u} + \boldsymbol{v}).$

Condition (C) is cumbersome to verify; the following lemma simplifies matters.

LEMMA 1. Conditions (A), (B) and (C) are equivalent to (A), (B) and (D).

(D) $\psi(t) = \phi(\mathbf{u} + t\mathbf{v})$ is a convex function in t for all \mathbf{u} and \mathbf{v} .

Proof. Assume (A), (B) and (C) and fix u and v. Then for $0 \leq v$