A GEOMETRIC INEQUALITY WITH APPLICATIONS TO LINEAR FORMS

Jeffrey D. VaAler

Let C_{N} be a cube of volume one centered at the origin in R^{N} and let P_{K} be a K-dimensional subspace of R^{N}. We prove that $C_{N} \cap P_{K}$ has K-dimensional volume greater than or equal to one. As an application of this inequality we obtain a precise version of Minkowski's linear forms theorem. We also state a conjecture which would allow our method to be generalized.

1. Introduction. Let $C_{N}=[-1 / 2,1 / 2]^{N}$ be the N-dimensional cube of volume one centered at the origin in \boldsymbol{R}^{N} and suppose that P_{K} is a K-dimensional linear subspace of \boldsymbol{R}^{N}. Dr. Anton Good has conjectured that the K-dimensional volume of $P_{K} \cap C_{N}$ is always greater than or equal to one. In case $K=N-1$ this has recently been proved by Hensley [6], who also obtained upper bounds for this volume. Our purpose in this paper is to prove the conjecture for arbitrary K and to give some applications to Minkowski's theorem on linear forms. In fact we prove a more general inequality for the product of spheres of various dimensions which contains the conjecture as a special case.

We write \bar{x} for the column vector $\left(\begin{array}{c}x_{1} \\ \cdots \\ x_{n}\end{array}\right)$ in \boldsymbol{R}^{n} and

$$
|\bar{x}|=\left(\sum_{j=1}^{n}\left(x_{j}\right)^{2}\right)^{1 / 2}
$$

for its length. We define the sphere S_{n} by

$$
S_{n}=\left\{\bar{x} \in \boldsymbol{R}^{n}:|\bar{x}| \leqq \rho_{n}\right\}
$$

where $\rho_{n}=\pi^{-1 / 2}\{\Gamma(n / 2+1)\}^{1 / n}$. It follows that $\mu_{n}\left(S_{n}\right)=1$ where μ_{n} is Lebesgue measure on \boldsymbol{R}^{n}. Also we let $\chi_{U}(\bar{x})$ denote the characteristic function of a subset U in \boldsymbol{R}^{n}.

Our first main result is contained in the following theorem.
Theorem 1. Suppose that $n_{1}, n_{2}, \cdots, n_{J}$ are positive integers, $Q_{N}=S_{n_{1}} \times S_{n_{2}} \times \cdots \times S_{n_{J}}$ is in $\boldsymbol{R}^{N}, N=n_{1}+n_{2}+\cdots+n_{J}$, and A is a real $N \times K$ matrix, $\operatorname{rank}(A)=K$. Then

$$
\begin{equation*}
\left|\operatorname{det} A^{T} A\right|^{-1 / 2} \leqq \int_{R^{K}} \chi_{Q_{N}}(A \bar{x}) d \mu_{K}(\bar{x}) \tag{1.1}
\end{equation*}
$$

where A^{T} is the transpose of A.

