A DOUBLE INVERSION FORMULA

JOHN BRILLHART

Let G be an abelian group and suppose $\{a_n\}$ and $\{b_n\}$, $n \ge 1$, are sequences in G. Let p be an odd prime and set $\eta_e = (e_1/p)$, the Legendre symbol, where $e = p^s e_1$, $s \ge 0$, $p \nmid e_1$. Also, let $\chi_e^{\pm} = (1 \pm \eta_e)/2$. Define the sequence $\{c_n\}$ and $\{d_n\}$, $n \ge 1$, by (1) $c_n = \sum_{ef \le n} (\chi_e^+ a_f + \chi_e^- b_f)$

and

$$(2) d_n = \sum_{e_f=n} (\chi_e^- a_f + \chi_e^+ b_f) .$$

THEOREM. For $n \ge 1$ and μ the Möbius function,

(3)
$$a_n = \sum_{ef=n} \mu(e)(\chi_e^+ c_f + \chi_e^- d_f)$$

and

$$(4) b_n = \sum_{ef=n} \mu(e)(\chi_e^- c_f + \chi_e^+ d_f) .$$

Proof of the Theorem. Using (1) and (2) in (3) we obtain

$$\begin{split} \sum_{ef=n} \mu(e)(\chi_e^+ c_f + \chi_e^- d_f) \\ &= \sum_{ef=n} \mu(e) \sum_{rs=f} \left[(\chi_e^+ \chi_r^+ + \chi_e^- \chi_r^-) a_s + (\chi_e^+ \chi_r^- + \chi_e^- \chi_r^+) b_s \right] \\ &= \sum_{ef=n} \mu(e) \sum_{s|f} \left(\chi_{n|s}^+ a_s + \chi_{n|s}^- b_s \right) \\ &= \sum_{s|n} \left(\chi_{n|s}^+ a_s + \chi_{n|s}^- b_s \right) \sum_{e|n|s} \mu(e) = a_n \;. \end{split}$$

Formula (4) is proven similarly.

Received June 8, 1979.

UNIVERSITY OF ARIZONA TUCSON, AZ 85721