MAPS ON SIMPLE ALGEBRAS PRESERVING ZERO PRODUCTS. II: LIE ALGEBRAS OF LINEAR TYPE

W. J. WONG

The study of maps on an algebra which preserve zero products is suggested by recent studies on linear transformations of various types on the space of $n \times n$ matrices over a field, particularly Watkins' work on maps preserving commuting pairs of matrices. This article generalizes the result of Watkins by determining the bijective semilinear maps f on a Lie algebra L with the property that

 $[x, y] = 0 \longrightarrow [f(x), f(y)] = 0,$

where $x, y \in L$, for a class of Lie algebras constructed from finite-dimensional simple associative algebras.

Introduction. In [8] we began the study of the semilinear maps on an algebra over a field k which preserve zero products, a problem arising from recent investigations characterizing the linear transformations on the $n \times n$ matrix algebra $M_n(k)$ over k which preserve various properties, particularly the work of Watkins on maps preserving commuting pairs of matrices [7]. If L is a Lie algebra, this means that we are concerned with the bijective semilinear maps f on L such that [f(x), f(y)] = 0 for all pairs of elements x, y of L such that [x, y] = 0. We say that f preserves zero Lie products.

If L is finite-dimensional, these maps f form a group G(L) [8]. Clearly G(L) contains the group G_1 of all semilinear automorphisms and anti-automorphisms (semilinear maps which are automorphisms or anti-automorphisms of the multiplicative structure of L), the group of units G_2 of the centroid of L (the algebra of linear transformations which commute with left multiplications in L), and the group G_3 of all bijective transformations f of the form f(x) = x + g(x), where g is a linear map of L into its center Z(L). Let $G_0(L) =$ $G_1G_2G_3$.

In this paper we determine G(L), for a class of simple Lie algebras L. These are obtained by taking finite-dimensional simple associative algebras A over a field k and forming the Lie algebra $L = [A, A]/[A, A] \cap Z(A)$, where [A, A] is the subspace spanned by all the commutators [x, y] = xy - yx, and Z(A) is the center of A. If A is noncommutative, then L is a simple Lie algebra, except when A has characteristic 2 and is 4-dimensional over Z(A) [1, p. 17]. Except for cases of "small length," we show that $G(L) = G_0(L)$ for such a Lie algebra L. In fact, we can deal with a wider class of