TENSOR PRODUCTS OF BANACH BUNDLES

J. W. Kitchen and D. A. Robbins

This paper is concerned with projective and inductive tensor products of bundles of Banach spaces. Let $\pi: E \rightarrow S$ and $\rho: F \rightarrow T$ be bundles of Banach spaces over the locally compact Hausdorff spaces S and T, with fibers $\left\{E_{s}: s \in S\right\}$ and $\left\{F_{t}: t \in T\right\}$, respectively. Let $\Gamma_{0}(\pi)$ and $\Gamma_{0}(\rho)$ be their spaces of sections which disappear at infinity. We show the existence of a bundle $\pi \hat{\otimes} \rho: E \hat{\otimes} F \rightarrow S \times T$ whose fibers are $\left\{E_{s} \hat{\otimes} E_{t}:(s, t) \in S \times T\right\}$; if $\sigma \in \Gamma_{0}(\pi)$ and $\tau \in \Gamma_{0}(\rho)$, then their pointwise tensor $\sigma \odot \tau$ defined by $(\sigma \odot \tau)(s, t)=\sigma(s) \otimes \tau(t)$ is a section of the bundle $\pi \hat{\otimes} \rho: E \hat{\otimes} F \rightarrow S \times T$. Further, we show the existence of a bundle $\pi \hat{\hat{\otimes}} \rho: E \hat{\hat{\otimes}} F \rightarrow S \times T$ whose fibers are $\left\{E_{s} \hat{\hat{\otimes}} F_{t}:(s, t) \in S \times T\right\}$, and demonstrate that $\Gamma_{0}(\pi) \hat{\hat{\otimes}}$ $\Gamma_{0}(\rho)$ and $\Gamma_{0}(\pi \widehat{\hat{\otimes}} \rho)$ are isometrically isomorphic.

The present paper continues the study begun in [5] of the relationships between Banach modules and bundles of Banach spaces. Specifically, it concerns tensor products of such objects.

Given two bundles of Banach spaces $\pi: E \rightarrow S$ and $\rho: F \rightarrow T$ having locally compact base spaces we show that there is a bundle of Banach spaces $\theta: G \rightarrow S \times T$ having the following properties:
(1) for each pair (s, t) in $S \times T$ the stalk $G_{s t}=\theta^{-1}(\{(s, t)\})$ is $E_{s} \hat{\otimes} F_{t}$, where, as in [5], $E_{s}=\pi^{-1}(\{s\})$ and $F_{t}=\rho^{-1}(\{t\}) ;$
(2) given two sections $\sigma \in \Gamma_{0}(\pi)$ and $\tau \in \Gamma_{0}(\rho)$ their pointwise tensor product $\sigma \odot \tau$ defined by

$$
(\sigma \odot \tau)(s, t)=\sigma(s) \otimes \tau(t)
$$

is a section of the bundle $\theta: G \rightarrow S \times T$. (Here again the reader is referred to [5] for notation and terminology.)

The bundle $\theta: G \rightarrow S \times T$ is called the projective tensor product of the given bundles and is denoted by $\pi \hat{\otimes} \rho: E \hat{\otimes} F \rightarrow S \times T$.

Tensor products of Banach bundles relate to tensor products of Banach modules in the following fashion. Suppose that A and B are commutative Banach algebras with maximal ideals spaces S and T. Suppose further that (M, A) and (N, B) are Banach modules which satisfy the (KR) condition. Then
(1) the Banach module ($M \hat{\otimes} N, A \hat{\otimes} B$) also satisfies the (KR) condition;
(2) the canonical bundle associated with $(M \hat{\otimes} N, A \hat{\otimes} B)$ is (bundle isomorphic to) the tensor product of the canonical bundles

