A CHARACTERIZATION OF LOCALLY MACAULAY COMPLETIONS

CRAIG HUNEKE

The purpose of this note is to prove the following theorem.

THEOREM 1.1. Let (R, m) be a Noetherian local ring of dimension $d \ge 1$ and depth d-1. By \hat{R} denote the completion of R in the *m*-adic topology. Then the following are equivalent:

(1) \hat{R} is equidimensional and satisfies Serre's property S_{d-1}

(2) $H_m^{d-1}(R)$ has finite length

(3) There exists an N > 0 such that if x_1, \dots, x_d is a sequence of elements R with $\operatorname{ht}(x_{i_1}, \dots, x_{i_j}) = j$ for all *j*-elements subsets of $\{1, \dots, n\}$, $1 \leq j \leq n$, and if $m_i \geq N$, $1 \leq i \leq d$, then $x_1^{m_1}, \dots, x_d^{m_d}$ is an unconditioned *d*-sequence.

Recall the local ring (S, N) is equidimensional if for every minimal prime divisor p of zero, dim $S/p = \dim S$.

Serre's property S_k is that

depth
$$R_p \geq \min[\operatorname{ht} p, k]$$

for all primes p.

We will always denote the local cohomology functor by $H_m^j(_)$ ([1]).

We recall the definition of a d-sequence due to this author [3].

DEFINITION 0.1. A system of elements x_1, \dots, x_d in a commutative ring R is said to be a d-sequence if

(1) $x_i \notin (x_1, \cdots, \hat{x}_i, \cdots, x_d)$

(2) $((x_1, \dots, x_i): x_{i+1}x_k) = ((x_1, \dots, x_i): x_k)$ for $k \ge i + 1$ and $i \ge 0$. A *d*-sequence is said to be unconditioned if any permutation of it remains a *d*-sequence.

These have been studied extensively by this author and have been useful to determine the "analytic" properties of ideals generated by them. In [3] the following was skown:

PROPOSITION. Let (R, m) be a local Noetherian ring. Then R is Buchsbaum (see [10] for a definition and discussion) if and only if every system of parameters forms a d-sequence.

Thus Theorem 1.1 may be seen as a related result, characterizing rings in which "almost all" s.o.p.'s form a d-sequence. Independent