TOPOLOGICAL METHODS FOR C*-ALGEBRAS I: SPECTRAL SEQUENCES

CLAUDE SCHOCHET

Let A be a C^* -algebra filtered by an increasing sequence of closed ideals $\{A_n\}$ with $\overline{\bigcup_n A_n} = A$. Then there is a spectral sequence which converges to $K_*(A)$ and has $E_{p,*}^{\perp} = K_*(A_p/A_{p-1})$. More generally, such spectral sequences obtain for the Brown-Douglas-Fillmore functors $\mathscr{C}xt_*(A)$, the Pimsner-Popa-Voiculescu functors $\mathscr{C}xt_*(Y; A)$, the Kasparov functors $\mathscr{C}xt_*(A, B)$, or indeed for any sequence of covariant or contravariant functors on C^* -algebras which satisfies an exactness axiom.

In recent years various functors on C^* -algebras have been created by analysts interested in diverse problems in single operator theory, index theory, and classification of certain types of extensions of C^* -algebras. Notable among these is the functor $\mathscr{C}xt(A)$ of Brown-Douglas-Fillmore [1], the Pimsner-Popa-Voiculescu functor $\mathscr{C}xt(Y; A)$ [13] and the Kasparov functor $\mathscr{C}xt(A, B)$ [9]. In addition there is the variant of K-theory for Banach categories developed by Karoubi and others in great generality which yields functors K_0, K_1 on C^* -algebras (cf. [20]).

In certain cases these functors have been identified with wellknown objects. For example, if X is a compact space then

$$K_q(C(X)) \cong K^q(X)$$

where C(X) is the C*-algebra of complex-valued continuous functions on X and K^q is topological K-theory which, for X compact, corresponds to formal differences of vector bundles over X. More recently, the groups $\mathscr{E}xt(C(X))$ have been computed in terms of topological K-theory [1], [7] for X compact metric of finite dimension, the groups $\mathscr{E}xt(Y; C(X))$ are known [18], [19], and the groups $\mathscr{E}xt(A, B)$ are partially understood in some special cases [9], [16].

The K_0 -group of an AF-algebra has the structure of an ordered "dimension group". These groups have been characterized by Effros, Handelman, and Shen, following earlier work of Bratteli and G. Elliott. (See Effros [6] for a survey.) The groups $K_*(A \times_{\alpha} G)$ are known in terms of K_*A for $G = \mathbb{Z}$ and \mathbb{R} by the deep work of Pimsner-Voiculescu [14] and Connes [2] respectively. These results are strong enough to determine the K-groups for many C^* -algebras of interest in applications (c.f. the striking results of Cuntz [3]).

Seen in perspective, however, the field would seem to be in its