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MANIFOLDS ADMITTING TAUT HYPERSPHERES

JAMES J. HEBDA

The definition of taut submanifolds in Euclidean space
is extended to submanifolds of an arbitrary complete
Riemannian manifold. Manifolds containing a tautly em-
bedded hypersphere are characterized up to homeomorphism.
Also, a partial result in this direction is proved for manifolds
containing a tautly embedded sphere of arbitrary codimension.

1* Taut submanifolds have received much attention in recent
years [1], [3], [6], [7]. There the emphasis is on characterizing the
taut submanifolds of a particular ambient space, usually Euclidean
space, although there are studies involving hyperbolic space and
complex protective space as well [4], [5]. In this paper the subject
is approached from a different perspective: to characterize the am-
bient space given that it contains certain taut submanifolds. For
example:

THEOREM 1. A complete simply connected Riemannian manifold
of dimension n that admits a taut embedding of S™'1 is either homeo-
morphic to Sn, diffeomorphic to Rn, or diffeomorphic to S"'1 x R.

In a Euclidean sphere or in a complete, simply-connected Rie-
mannian manifold without conjugate points, every geodesic sphere
is taut. The converse is also true.

THEOREM 2. Suppose a complete Riemannian manifold has the
property that about every point some small geodesic sphere is taut.
Then the manifold is either simply connected without conjugate
points or isometric to a Euclidean sphere.

2* Let M be a complete Riemannian manifold and N c M a
proper submanifold. In particular, N is a closed submanifold with
the subspace topology. For each p e M, we define the function
LP:N->R b y Lp(x) — [d(x, p)]2 w h e r e xeN a n d d i s t h e d i s t a n c e
f u n c t i o n on ikf. W e s a y JV is taut if f o r a l m o s t e v e r y peM a n d
a l m o s t e v e r y r > 0 t h e h o m e o m o r p h i s m

induced by inclusion is injective, where the homology coefficients
are in some field. Because of Lemma 2.8 on page 705 of [3], this
definition coincides with the definition for taut submanifolds of
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