BUNDLES OVER CONFIGURATION SPACES

F. R. COHEN, R. L. COHEN, N. J. KUHN AND J. L. NEISENDORFER

Let $F(R^n, k)$ be the configuration space of ordered sets of k distinct points in \mathbb{R}^n . $F(\mathbb{R}^n, k)$ is acted upon freely by the symmetric group on k letters, Σ_k . In this paper we calculate the order of the vector bundles

 $\xi_{n,k}: F(\mathbb{R}^n, k) \times_{\Sigma_k} \mathbb{R}^k \to F(\mathbb{R}^n, k) / \Sigma_k.$

Applications to the study of iterated loop spaces of spheres are also discussed.

The study of the stable homotopy type of the spaces $\Omega^n S^{n+r}$ has 1. received much attention in recent years [2, 8, 13]. The starting point for this study was Snaith's stable descomposition [18]:

$$\Omega^n S^{n+r} \simeq_s \bigvee_{k\geq 0} F(\mathbf{R}^n, k)^+ \wedge_{\Sigma_k} S^{r^{(k)}},$$

where $F(\mathbf{R}^n, k)^+$ is the configuration space of k ordered distinct points in \mathbf{R}^n together with a disjoint basepoint, $S^{r^{(k)}}$ is the k-fold smash product of S' with itself, Σ_k is the symmetric group of k letters, and where " \simeq_s " denotes stable homotopy equivalence. The space $F(\mathbf{R}^n, k)^+ \wedge_{\Sigma_k} S^{r^{(k)}}$ is clearly the Thom complex of the

r-fold Whitney sum of the vector bundle

$$\boldsymbol{\xi}_{n,k}: F(\mathbf{R}^n, k) \times_{\boldsymbol{\Sigma}_k} \mathbf{R}^k \to F(\mathbf{R}^n, k) / \boldsymbol{\Sigma}_k.$$

If $M(\xi_{n,k})$ is the associated Thom spectrum, then Snaith's theorem gives an equivalence of spectra

$$\Sigma^{\infty}\Omega^{n}S^{n+r}\simeq\bigvee_{k\geq 0}\Sigma^{rk}M(r\xi_{n,k}),$$

where Σ^{∞} is the stabilization functor which assigns to a space its associated suspension spectrum.

If $\phi_{n,k}$ is the stable order of $\xi_{n,k}$ (i.e., $\phi_{n,k}$ is the smallest integer such that $\phi_{n,k}\xi_{n,k}$ is stably trivial) then we have the obvious periodicity

$$M((r + \phi_{n,k})\xi_{n,k}) \simeq \Sigma^{k\phi_{n,k}}M(r\xi_{n,k}).$$

This, together with Snaith's theorem gives clear interrelationships amongst the stable homotopy types of the spaces $\Omega^n S^{n+r}$ as r varies.

The case n = 2 is well understood by the work of F. Cohen, M. Mahowald, and R. J. Milgram [5], who proved that $\phi_{2,k} = 2$ for all k. The resulting periodicity in the homotopy type of the associated Thom