ON THE APPROXIMATION OF SINGULARITY SETS BY ANALYTIC VARIETIES

HERBERT ALEXANDER AND JOHN WERMER

We study the problem of approximating the singularity set of an analytic function of two complex variables, lying in a product domain in C^2 , by analytic varieties.

Let *D* denote the open unit disk and let

$$D \times \mathbf{C} = \{(z, w) \mid z \in D, w \in \mathbf{C}\} \subset \mathbf{C}^2.$$

We consider a compact set X contained in the unit bidisk $|z| \le 1$, $|w| \le 1$. Let X^0 denote $X \cap (D \times \mathbb{C})$. We assume that there exists a function ϕ which is analytic on $D \times \mathbb{C} \setminus X^0$ and singular at each point of X^0 . If there exists such a ϕ we call X a singularity set.

For each λ in \overline{D} we put

$$X_{\lambda} = \{ w \in \mathbf{C} \, | \, (\lambda, w) \in X \}.$$

Each X_{λ} is then a compact subset of $|w| \le 1$. We assume $X_{\lambda} \ne \emptyset$, for each λ .

Singularity sets were first studied by Hartogs, in [3]. Hartogs showed that if for some integer $p X_{\lambda}$ contains at most p points for each λ , then X^0 is an analytic subvariety of $D \times C$. Further results on singularity sets were given by Oka, [5], and Nishino, [4].

Recently one of us in [7] and Slodkowski in [6] studied general singularity sets. In particular, Theorem 1 in [7] gives that the maximum principle holds on X^0 for restrictions to X^0 of polynomials in z and w, in the sense that for each compact subset N of X^0 and each $(z_0, w_0) \in N$,

$$|P(z_0, w_0)| \leq \max_{\partial N} |P|,$$

for each polynomial P.

(See also [6], Theorem II, (vi).) Here ∂N denotes the boundary of N relative to X^0 . In particular, fix R < 1. Put $N = \{(\lambda, w) \in X | |\lambda| \le R\}$. Then $\partial N = \{(\lambda, w) \in X | |\lambda| = R\}$. Hence, for $(z_0, w_0) \in X$, $|z_0| < R$, we have for each polynomial P,

$$|P(z_0, w_0)| \le \max_{X \cap (|z|=R)} |P|.$$