NATURAL TRANSFORMATIONS OF TENSOR-PRODUCTS OF REPRESENTATION-FUNCTORS I, COMBINATORIAL PRELIMINARIES

Jacob Towber

Abstract

The present paper furnishes some combinatorial preliminaries towards a study of natural transformations between tensor products of shape functors \wedge^{α} and co-shape functors V_{α}. The main result is the construction of an explicit basis for the module defined by (1) below; an apparently new result used for this purpose, which may be of some independent interest, is a 'column-free' expression for the Young idempotent NPN (in Young's terminology) associated with a partition, given by 1.2 below.

Introduction. In the following, the reader will be assumed to be familiar with the concepts and results of [1] and [2].

Let $\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}$ be partitions, and let A be a commutative ring. The present paper is the first of a series concerned with the A-module, denoted by

$$
\begin{equation*}
\operatorname{Nat~Tsf}_{A}\left(\alpha_{1} \times \cdots \times \alpha_{m}, \beta_{1} \times, \ldots, \times \beta_{n}\right) \tag{1}
\end{equation*}
$$

which consists of all natural transformations from the functor

$$
\wedge_{A}^{\alpha_{1}} \otimes \cdots \otimes \wedge{ }_{A}^{\alpha_{m}}: \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{A}, E \mapsto \wedge_{A}^{\alpha_{1}} E \otimes \cdots \otimes \wedge_{A}^{\alpha_{m}} E
$$

into the similar functor $\wedge_{A}^{\beta_{1}} \otimes \cdots \otimes \wedge_{A}^{\beta_{n}}$ (If A is a field this is equivalent to studying the space of interwining operators between the two representations of $\mathrm{GL}(E)$ with representation-modules $\wedge_{A}^{\alpha_{1}} E \otimes \cdots \otimes \wedge{ }_{A}^{\alpha_{m}} E$ and $\wedge_{A}^{\beta_{1}} E \otimes \cdots \otimes \wedge{ }_{A}^{\beta_{n}} E$ respectively (provided $\operatorname{dim} E$ is sufficiently great).

When A is a \mathbf{Q}-algebra, a generating set for the A-module (1) is furnished by the "exchange-transformations" given by Def. 3-6 below and a free basis by the subset of these given by Def. 3-8 (In the case $m=2, n=1$ this furnishes a more precise version of the LittlewoodRichardson rule (which only specifies the cardinality of such a basis).) The general case does not seem to be an immediate consequence of this special case; the attempt to reduce to the special case in the obvious way, by using the associativity of the tensor product, leads to the problem next to be discussed (and yields a second, different free basis for 1), related to

