A CLASS OF SURJECTIVE CONVOLUTION OPERATORS

WOJCIECH ABRAMCZUK

Let μ be a distribution with compact support in \mathbb{R}^n . In the terminology of Ehrenpreis [2] μ is called invertible for a space of distributions \mathfrak{F} in \mathbb{R}^n if $\mu * \mathfrak{F} = \mathfrak{F}$. Using his characterisation of invertible distributions in terms of the growth of their Fourier transforms, we obtain a class of invertible distributions which properly contains the distributions with finite supports. We consider $\mathfrak{F} = \mathfrak{F}$ (or \mathfrak{D}') and $\mathfrak{F} = \mathfrak{D}'_F$, but our results for the latter space are only partial.

1. Introduction. We follow the notation of Schwartz [6]: by $\mathfrak{D}'(\mathfrak{D}'_F)$ we denote the space of distributions (distributions of finite order) in \mathbb{R}^n . \mathfrak{E} will denote the space of infinitely differentiable functions in \mathbb{R}^n with the topology of uniform convergence of functions and all their derivatives on compact subsets of \mathbb{R}^n . The dual space of \mathfrak{E} , denoted by \mathfrak{E}' , consists of distributions with compact support in \mathbb{R}^n . For $\mu \in \mathfrak{E}'$ we define the Fourier-Laplace transform of μ by

$$\hat{\mu}(\zeta) = \mu(e^{-i\langle \cdot, \zeta \rangle}), \qquad \zeta \in \mathbf{C}^n.$$

Ehrenpreis [2] and Hörmander [3] have studied the range of convolution operators

(1)
$$u \mapsto \mu * u, \quad \mu \in \mathcal{E}',$$

in each of the spaces \mathfrak{D}' , \mathfrak{D}'_F and \mathfrak{E} . We recall their main result: the operator (1) in \mathfrak{E} and, equivalently, in \mathfrak{D}' (resp. in \mathfrak{D}'_F) is surjective if and only if $\hat{\mu}$ is slowly decreasing (resp. very slowly decreasing) in the sense of

DEFINITION 1. Let $\mu \in \mathcal{E}'$. $\hat{\mu}$ is called slowly decreasing if there exist constants A, B and m such that

$$\sup_{|\xi - \xi_0| \le A \log(2 + |\xi_0|)} |\hat{\mu}(\xi)| \ge B (1 + |\xi_0|)^{-m}$$

for all $\xi_0 \in \mathbb{R}^n$. $\hat{\mu}$ is called very slowly decreasing if there exists a constant *m* and for each $\varepsilon > 0$ a constant B_{ε} such that

$$\sup_{|\xi-\xi_0|\leq \varepsilon \log(2+|\xi_0|)} |\hat{\mu}(\xi)| \geq B_{\varepsilon} (1+|\xi_0|)^{-m}$$

for all $\xi_0 \in \mathbf{R}^n$.