STABLE AUGMENTATION QUOTIENTS OF ABELIAN GROUPS

Alfred W. Hales

To the Memory of Ernst Straus

Abstract

Let G be a finite abelian p-group, $\mathrm{Z} G$ the associated integral group ring, and Δ its augmentation ideal. This paper determines the stable structure of the augmentation quotients $\Delta^{n} / \Delta^{n+1}$ and the structure of the graded ring $\operatorname{gr} \mathbf{Z} G$. It also gives an application to the dimension subgroup problem, extending earlier results of Gupta-Hales-Passi.

1. Introduction. Let $\mathbf{Z} G$ be the integral group ring of a finite abelian group G. Denote by Δ the augmentation ideal of $\mathbf{Z} G$, i.e. the kernel of the map from $\mathbf{Z} G$ to \mathbf{Z} sending each group element to 1 . Further denote by Q_{n} the nth "augmentation quotient" $\Delta^{n} / \Delta^{n+1}$. Then Bachman and Grunenfelder [1] have shown that, for all $n \geq n_{0}=n_{0}(G)$, we have $Q_{n} \cong Q_{n+1} \cong Q_{n+2} \cdots$ as abelian groups. Let $Q_{\infty}=Q_{\infty}(G)$ denote the "eventual" isomorphism type of the Q_{n}. A number of papers ([2], [5], [6], [7], [10], [11], [12], [13], [15]) have been devoted to the determination of $Q_{\infty}(G)$ in terms of G. In [4] we gave a conjecture for the structure of $Q_{\infty}(G)$ and verified this conjecture whenever $G \cong\left(C_{p^{n}}\right)^{m}$ for some m and n. Here we shall establish the truth of this conjecture for all finite abelian G, and in the process determine $n_{0}=n_{0}(G)$ and the structure of the graded ring gr $\mathbf{Z} G$ associated to $\mathbf{Z} G$. We also give an application (extending a result in [3]) to the dimension subgroup problem.

The reader should consult Passi [8] for general background on the subject, and [4] for more specific background on this problem.
2. Description of results. Without loss of generality we may assume that G is a finite abelian p-group, in which case Q_{∞} is also easily seen to be such a group. One way of viewing our problem is that we wish to determine the invariants of Q_{∞} in terms of those of G. Instead, however, we give an explicit presentation of (a group isomorphic to) Q_{∞} from which the invariants of Q_{∞} can be determined in a straightforward (though tedious) manner.

Define an abelian group Q_{G} via generators and relations as follows: let P_{G} denote the poset of cyclic subgroups H of G. (So P_{G} is a tree with

