# THE RADON TRANSFORM ON $\mathbf{Z}_{2}^{k}$ 

Persi Diaconis and R. L. Graham

In memory of Ernst Straus


#### Abstract

Suppose $G$ is a finite group and $f$ is a function mapping $G$ into the set of real numbers $R$. For a subset $S \subseteq G$, define the Radon transform $F_{S}$ of $f$ mapping $G$ into $\mathbf{R}$ by: $$
F_{S}(x)=\sum_{y \in S+x} f(y)
$$ where $S+x$ denotes the set $\{s+x: s \in S\}$. Thus, the Radon transform can be thought of as a way of replacing $f$ by a "smeared out" version of $f$. This form of the transform represents a simplified model of the kind of averaging which occurs in certain applied settings, such as various types of tomography and recent statistical averaging techniques.

A fundamental question which arises in connection with the Radon transform is whether or not it is possible to invert it, i.e., whether one can recover (in principle) the function $f$ from knowledge of $F_{S}$.

In this paper we investigate this problem in detail for several special classes of groups, including the group of binary $n$-tuples under modulo 2 addition.


1. Introduction. Let $X$ be a finite set and let $Y$ be a class of subsets of $X$. For a real-valued function $f: X \rightarrow \mathbf{R}$, the Radon transform of $f$ at $y \in Y$ is defined as

$$
\tilde{f}(y)=\sum_{x \in y} f(x)
$$

This paper investigates uniqueness of the transform when $X$ is the group of binary $k$-tuples $\mathbf{Z}_{2}^{k}$ or the symmetric group $S_{n}$, and $Y$ is the class of translates of a given set $S \subset X$.

In $\S 2$ we deal with $\mathbf{Z}_{2}^{k}$. It is shown that the transform is one-to-one when $|S|$ is odd and is not one-to-one for most sets of even cardinality. It is also shown that the problem of determining uniqueness is $N P$-complete so that at present no polynomial-time algorithm (in $k$ and $|S|$ ) is known to exist to determine uniqueness.

In Section 3 we give explicit inversion theorems for the case where $S=\left\{x \in \mathbf{Z}_{2}^{k}: H(0, x) \leq 1\right\}$ where $H(x, y)$ is Hamming distance-the number of coordinates where $x$ and $y$ disagree. The transform is one-to-one

